Higher homotopy categories and Brown representability

Algebra Seminar Masaryk University, Brno

George Raptis University of Regensburg

14 October 2021

Theorem (LAFT for presentable ∞ -categories; Lurie)

Let ${\mathscr C}$ and ${\mathscr D}$ be presentable $\infty\text{-categories}$ and let ${\mathscr S}$ denote the $\infty\text{-category}$ of spaces.

Theorem (LAFT for presentable ∞ -categories; Lurie)

Let ${\mathscr C}$ and ${\mathscr D}$ be presentable $\infty\text{-categories}$ and let ${\mathscr S}$ denote the $\infty\text{-category}$ of spaces.

• A functor $F: \mathscr{C} \to \mathscr{D}$ is a left adjoint if and only if F preserves small colimits.

• • • • • • • • • • • •

Theorem (LAFT for presentable ∞ -categories; Lurie)

Let $\mathscr C$ and $\mathscr D$ be presentable ∞ -categories and let $\mathscr S$ denote the ∞ -category of spaces.

- A functor $F: \mathscr{C} \to \mathscr{D}$ is a left adjoint if and only if F preserves small colimits.
- A functor F: C^{op} → S is representable (⇔ F^{op} is a left adjoint) if and only if F sends small colimits in C to limits in S.

Theorem (LAFT for presentable ∞ -categories; Lurie)

Let C and D be presentable ∞ -categories and let S denote the ∞ -category of spaces.

- A functor $F: \mathscr{C} \to \mathscr{D}$ is a left adjoint if and only if F preserves small colimits.
- A functor F: C^{op} → S is representable (⇔ F^{op} is a left adjoint) if and only if F sends small colimits in C to limits in S.

Theorem (classical Brown representability; Brown, Heller)

Theorem (LAFT for presentable ∞ -categories; Lurie)

Let C and D be presentable ∞ -categories and let S denote the ∞ -category of spaces.

- A functor $F: \mathscr{C} \to \mathscr{D}$ is a left adjoint if and only if F preserves small colimits.
- A functor F: C^{op} → S is representable (⇔ F^{op} is a left adjoint) if and only if F sends small colimits in C to limits in S.

Theorem (classical Brown representability; Brown, Heller)

Let \mathscr{C} be a (locally small) category with small coproducts, weak pushouts, and a set of compact weak generators (e.g. $\operatorname{Ho}(CW^c_*)$, $\operatorname{Ho}(\operatorname{spectra})$, etc.).

Theorem (LAFT for presentable ∞ -categories; Lurie)

Let C and D be presentable ∞ -categories and let S denote the ∞ -category of spaces.

- A functor $F: \mathscr{C} \to \mathscr{D}$ is a left adjoint if and only if F preserves small colimits.
- A functor F: C^{op} → S is representable (⇔ F^{op} is a left adjoint) if and only if F sends small colimits in C to limits in S.

Theorem (classical Brown representability; Brown, Heller)

Let \mathscr{C} be a (locally small) category with small coproducts, weak pushouts, and a set of compact weak generators (e.g. $\operatorname{Ho}(CW^c_*)$, $\operatorname{Ho}(\operatorname{spectra})$, etc.).

 A functor F: C^{op} → Set is representable if and only if F sends small coproducts to products and weak pushouts to weak pullbacks.

Theorem (LAFT for presentable ∞ -categories; Lurie)

Let C and D be presentable ∞ -categories and let S denote the ∞ -category of spaces.

- A functor $F: \mathscr{C} \to \mathscr{D}$ is a left adjoint if and only if F preserves small colimits.
- A functor F: C^{op} → S is representable (⇔ F^{op} is a left adjoint) if and only if F sends small colimits in C to limits in S.

Theorem (classical Brown representability; Brown, Heller)

Let \mathscr{C} be a (locally small) category with small coproducts, weak pushouts, and a set of compact weak generators (e.g. $\operatorname{Ho}(CW^c_*)$, $\operatorname{Ho}(\operatorname{spectra})$, etc.).

- A functor F: C^{op} → Set is representable if and only if F sends small coproducts to products and weak pushouts to weak pullbacks.
- A functor F: C → D is a left adjoint if and only if F preserves small coproducts and weak pushouts.

Questions

イロン イロン イヨン イヨン

Questions

Question 1:

Compactness is crucial for Brown representability, partly as compensation for the lack of general colimits. Is it also required for LAFT or is there a version of LAFT for more general ∞ -categories?

Questions

Question 1:

Compactness is crucial for Brown representability, partly as compensation for the lack of general colimits. Is it also required for LAFT or is there a version of LAFT for more general ∞ -categories?

Question 2:

Is there a general context for Brown representability which unifies classical Brown representability and LAFT for space-valued presheaves?

Definition

We say that an ∞ -category \mathscr{C} has an *essentially small colimit-dense subcategory* if there is an essentially small full subcategory $\mathscr{C}_0 \subset \mathscr{C}$ such that every object $x \in \mathscr{C}$ is a colimit of a diagram $K \to \mathscr{C}_0 \subset \mathscr{C}$ with values in \mathscr{C}_0 for some small simplicial set K.

< ロ > < 同 > < 三 > < 三)

Definition

We say that an ∞ -category \mathscr{C} has an *essentially small colimit-dense subcategory* if there is an essentially small full subcategory $\mathscr{C}_0 \subset \mathscr{C}$ such that every object $x \in \mathscr{C}$ is a colimit of a diagram $K \to \mathscr{C}_0 \subset \mathscr{C}$ with values in \mathscr{C}_0 for some small simplicial set K.

Theorem ("special SAFT"; Nguyen-R.-Schrade)

Let \mathscr{C} be a locally small cocomplete ∞ -category which has an essentially small colimit-dense subcategory and let \mathscr{D} be a locally small ∞ -category. Then a functor $F : \mathscr{C} \to \mathscr{D}$ is a left adjoint if and only if F preserves small colimits.

Definition

We say that an ∞ -category \mathscr{C} has an *essentially small colimit-dense subcategory* if there is an essentially small full subcategory $\mathscr{C}_0 \subset \mathscr{C}$ such that every object $x \in \mathscr{C}$ is a colimit of a diagram $K \to \mathscr{C}_0 \subset \mathscr{C}$ with values in \mathscr{C}_0 for some small simplicial set K.

Theorem ("special SAFT"; Nguyen-R.-Schrade)

Let \mathscr{C} be a locally small cocomplete ∞ -category which has an essentially small colimit-dense subcategory and let \mathscr{D} be a locally small ∞ -category. Then a functor $F : \mathscr{C} \to \mathscr{D}$ is a left adjoint if and only if F preserves small colimits.

Outline of the proof:

Definition

We say that an ∞ -category \mathscr{C} has an *essentially small colimit-dense subcategory* if there is an essentially small full subcategory $\mathscr{C}_0 \subset \mathscr{C}$ such that every object $x \in \mathscr{C}$ is a colimit of a diagram $K \to \mathscr{C}_0 \subset \mathscr{C}$ with values in \mathscr{C}_0 for some small simplicial set K.

Theorem ("special SAFT"; Nguyen-R.-Schrade)

Let \mathscr{C} be a locally small cocomplete ∞ -category which has an essentially small colimit-dense subcategory and let \mathscr{D} be a locally small ∞ -category. Then a functor $F : \mathscr{C} \to \mathscr{D}$ is a left adjoint if and only if F preserves small colimits.

Outline of the proof:

• F is a left adjoint if and only if $F_{/d}$ admits a terminal object for all $d \in \mathcal{D}$.

Definition

We say that an ∞ -category \mathscr{C} has an *essentially small colimit-dense subcategory* if there is an essentially small full subcategory $\mathscr{C}_0 \subset \mathscr{C}$ such that every object $x \in \mathscr{C}$ is a colimit of a diagram $K \to \mathscr{C}_0 \subset \mathscr{C}$ with values in \mathscr{C}_0 for some small simplicial set K.

Theorem ("special SAFT"; Nguyen-R.-Schrade)

Let \mathscr{C} be a locally small cocomplete ∞ -category which has an essentially small colimit-dense subcategory and let \mathscr{D} be a locally small ∞ -category. Then a functor $F : \mathscr{C} \to \mathscr{D}$ is a left adjoint if and only if F preserves small colimits.

Outline of the proof:

- F is a left adjoint if and only if $F_{/d}$ admits a terminal object for all $d \in \mathcal{D}$.
- $F_{/d}$ is locally small and admits small colimits.

Definition

We say that an ∞ -category \mathscr{C} has an *essentially small colimit-dense subcategory* if there is an essentially small full subcategory $\mathscr{C}_0 \subset \mathscr{C}$ such that every object $x \in \mathscr{C}$ is a colimit of a diagram $K \to \mathscr{C}_0 \subset \mathscr{C}$ with values in \mathscr{C}_0 for some small simplicial set K.

Theorem ("special SAFT"; Nguyen-R.-Schrade)

Let \mathscr{C} be a locally small cocomplete ∞ -category which has an essentially small colimit-dense subcategory and let \mathscr{D} be a locally small ∞ -category. Then a functor $F : \mathscr{C} \to \mathscr{D}$ is a left adjoint if and only if F preserves small colimits.

Outline of the proof:

- F is a left adjoint if and only if $F_{/d}$ admits a terminal object for all $d \in \mathcal{D}$.
- $F_{/d}$ is locally small and admits small colimits.
- *Criterion*: A locally small cocomplete ∞-category admits a terminal object if and only if it admits a small weakly terminal set.

イロト イヨト イヨト

Definition

We say that an ∞ -category \mathscr{C} has an *essentially small colimit-dense subcategory* if there is an essentially small full subcategory $\mathscr{C}_0 \subset \mathscr{C}$ such that every object $x \in \mathscr{C}$ is a colimit of a diagram $K \to \mathscr{C}_0 \subset \mathscr{C}$ with values in \mathscr{C}_0 for some small simplicial set K.

Theorem ("special SAFT"; Nguyen-R.-Schrade)

Let \mathscr{C} be a locally small cocomplete ∞ -category which has an essentially small colimit-dense subcategory and let \mathscr{D} be a locally small ∞ -category. Then a functor $F : \mathscr{C} \to \mathscr{D}$ is a left adjoint if and only if F preserves small colimits.

Outline of the proof:

- F is a left adjoint if and only if $F_{/d}$ admits a terminal object for all $d \in \mathcal{D}$.
- $F_{/d}$ is locally small and admits small colimits.
- Criterion: A locally small cocomplete ∞-category admits a terminal object if and only if it admits a small weakly terminal set.
- Show that $F_{/d}$ has a weakly terminal object.

< □ > < 同 > < 글 > < 글)

The goal is to introduce a Brown representability context which:

• generalizes from ordinary categories to (n, 1)-categories

The goal is to introduce a Brown representability context which:

- generalizes from ordinary categories to (n, 1)-categories
- generalizes from classical homotopy categories to higher homotopy categories

The goal is to introduce a Brown representability context which:

- generalizes from ordinary categories to (n, 1)-categories
- generalizes from classical homotopy categories to higher homotopy categories
- uses suitable generalizations of the notions of *weak colimit*, *weak generator*, and *compact object*

The goal is to introduce a Brown representability context which:

- generalizes from ordinary categories to (n, 1)-categories
- generalizes from classical homotopy categories to higher homotopy categories
- uses suitable generalizations of the notions of *weak colimit*, *weak generator*, and *compact object*
- bridges the gap between classical Brown representability and LAFT.

Definition

An ∞ -category $\mathscr C$ is an *n*-category, $n \ge 1$, if:

Definition

An ∞ -category $\mathscr C$ is an *n*-category, $n \ge 1$, if:

• given $f, f': \Delta^n \to \mathscr{C}$ such that $f \simeq f'$ (rel $\partial \Delta^n$), then f = f'. ('equivalent *n*-morphisms are equal')

Definition

An ∞ -category $\mathscr C$ is an *n*-category, $n \ge 1$, if:

- given $f, f' \colon \Delta^n \to \mathscr{C}$ such that $f \simeq f'$ (rel $\partial \Delta^n$), then f = f'. ('equivalent *n*-morphisms are equal')
- given $f, f': \Delta^m \to \mathscr{C}$, m > n, such that $f_{|\partial \Delta^m} = f'_{|\partial \Delta^m}$, then f = f'. ('no *m*-morphisms for m > n')

Definition

An ∞ -category $\mathscr C$ is an *n*-category, $n \ge 1$, if:

- given $f, f' \colon \Delta^n \to \mathscr{C}$ such that $f \simeq f'$ (rel $\partial \Delta^n$), then f = f'. ('equivalent *n*-morphisms are equal')
- given $f, f': \Delta^m \to \mathscr{C}$, m > n, such that $f_{|\partial \Delta^m} = f'_{|\partial \Delta^m}$, then f = f'. ('no *m*-morphisms for m > n')

Example

• n = 1: (nerves of) ordinary categories.

Definition

An ∞ -category $\mathscr C$ is an *n*-category, $n \ge 1$, if:

- given $f, f' \colon \Delta^n \to \mathscr{C}$ such that $f \simeq f'$ (rel $\partial \Delta^n$), then f = f'. ('equivalent *n*-morphisms are equal')
- given $f, f': \Delta^m \to \mathscr{C}$, m > n, such that $f_{|\partial \Delta^m} = f'_{|\partial \Delta^m}$, then f = f'. ('no *m*-morphisms for m > n')

Example

• n = 1: (nerves of) ordinary categories.

● X Kan complex/∞-groupoid. Then: $X \simeq (n\text{-category})$ if and only if $\pi_k(X) = 0$ for all k > n ($\stackrel{def}{=}$ *n*-truncated).

Definition

An ∞ -category $\mathscr C$ is an *n*-category, $n \ge 1$, if:

- given $f, f' \colon \Delta^n \to \mathscr{C}$ such that $f \simeq f'$ (rel $\partial \Delta^n$), then f = f'. ('equivalent *n*-morphisms are equal')
- given $f, f': \Delta^m \to \mathscr{C}$, m > n, such that $f_{|\partial \Delta^m} = f'_{|\partial \Delta^m}$, then f = f'. ('no *m*-morphisms for m > n')

Example

• n = 1: (nerves of) ordinary categories.

● X Kan complex/∞-groupoid. Then: $X \simeq (n$ -category) if and only if $\pi_k(X) = 0$ for all k > n ($\stackrel{def}{=} n$ -truncated).

Proposition

Let \mathscr{C} be an ∞ -category. Then: $\mathscr{C} \simeq (n$ -category) if and only if $\operatorname{map}_{\mathscr{C}}(x, y)$ is (n-1)-truncated for all $x, y \in \mathscr{C}$.

Let \mathscr{C} be an ∞ -category. There is a **homotopy** *n*-category $h_n\mathscr{C}$ together with a functor $\gamma_n \colon \mathscr{C} \to h_n\mathscr{C}$

Let \mathscr{C} be an ∞ -category. There is a **homotopy** *n*-category $h_n\mathscr{C}$ together with a functor $\gamma_n \colon \mathscr{C} \to h_n\mathscr{C}$ such that for every *n*-category \mathscr{D} :

$$(-\circ \gamma_n)$$
: Fun $(h_n \mathscr{C}, \mathscr{D}) \xrightarrow{\cong}$ Fun $(\mathscr{C}, \mathscr{D})$.

Let \mathscr{C} be an ∞ -category. There is a **homotopy** *n*-category $h_n\mathscr{C}$ together with a functor $\gamma_n \colon \mathscr{C} \to h_n\mathscr{C}$ such that for every *n*-category \mathscr{D} :

$$(-\circ \gamma_n)$$
: Fun $(h_n \mathscr{C}, \mathscr{D}) \xrightarrow{\cong}$ Fun $(\mathscr{C}, \mathscr{D})$.

Construction (Lurie). The set of *m*-simplices $(h_n \mathscr{C})_m$ of $h_n \mathscr{C}$ is

$$\frac{\{\operatorname{sk}_n\Delta^m \to \mathscr{C} \text{ which extend to } \operatorname{sk}_{n+1}\Delta^m\}}{\simeq \text{ relative to } \operatorname{sk}_{n-1}\Delta^m}$$

(日) (同) (日) (日)
Higher homotopy categories

Let \mathscr{C} be an ∞ -category. There is a **homotopy** *n*-category $h_n\mathscr{C}$ together with a functor $\gamma_n \colon \mathscr{C} \to h_n\mathscr{C}$ such that for every *n*-category \mathscr{D} :

$$(-\circ \gamma_n)$$
: Fun $(h_n \mathscr{C}, \mathscr{D}) \xrightarrow{\cong}$ Fun $(\mathscr{C}, \mathscr{D})$.

Construction (Lurie). The set of *m*-simplices $(h_n \mathscr{C})_m$ of $h_n \mathscr{C}$ is

$$\frac{\{\operatorname{sk}_n\Delta^m \to \mathscr{C} \text{ which extend to } \operatorname{sk}_{n+1}\Delta^m\}}{\simeq \text{ relative to } \operatorname{sk}_{n-1}\Delta^m}$$

Example $(n = 1 - \text{usual homotopy category } h(\mathscr{C}))$ The 0-simplices (objects) of $h_1\mathscr{C}$ are the objects of \mathscr{C} .

Higher homotopy categories

Let \mathscr{C} be an ∞ -category. There is a **homotopy** *n*-category $h_n\mathscr{C}$ together with a functor $\gamma_n \colon \mathscr{C} \to h_n\mathscr{C}$ such that for every *n*-category \mathscr{D} :

$$(-\circ \gamma_n)$$
: Fun $(h_n \mathscr{C}, \mathscr{D}) \xrightarrow{\cong}$ Fun $(\mathscr{C}, \mathscr{D})$.

Construction (Lurie). The set of *m*-simplices $(h_n \mathscr{C})_m$ of $h_n \mathscr{C}$ is

$$\frac{\{\operatorname{sk}_n\Delta^m \to \mathscr{C} \text{ which extend to } \operatorname{sk}_{n+1}\Delta^m\}}{\simeq \text{ relative to } \operatorname{sk}_{n-1}\Delta^m}$$

Example $(n = 1 - \text{usual homotopy category } h(\mathscr{C}))$

The 0-simplices (objects) of $h_1 \mathscr{C}$ are the objects of \mathscr{C} . The 1-simplices (morphisms) are the morphisms of \mathscr{C} up to homotopy.

Higher homotopy categories

Let \mathscr{C} be an ∞ -category. There is a **homotopy** *n*-category $h_n\mathscr{C}$ together with a functor $\gamma_n \colon \mathscr{C} \to h_n\mathscr{C}$ such that for every *n*-category \mathscr{D} :

$$(-\circ \gamma_n)$$
: Fun $(h_n \mathscr{C}, \mathscr{D}) \xrightarrow{\cong}$ Fun $(\mathscr{C}, \mathscr{D})$.

Construction (Lurie). The set of *m*-simplices $(h_n \mathscr{C})_m$ of $h_n \mathscr{C}$ is

$$\frac{\{\operatorname{sk}_n\Delta^m \to \mathscr{C} \text{ which extend to } \operatorname{sk}_{n+1}\Delta^m\}}{\simeq \operatorname{relative to } \operatorname{sk}_{n-1}\Delta^m}$$

Example $(n = 1 - \text{usual homotopy category } h(\mathscr{C}))$

The 0-simplices (objects) of $h_1 \mathscr{C}$ are the objects of \mathscr{C} . The 1-simplices (morphisms) are the morphisms of \mathscr{C} up to homotopy. The 2-simplices (composition) correspond to equivalence classes of diagrams:

G. Raptis

< □ > < □ > < □ > < □ > < □ >

Problem: Let \mathscr{C} be an ∞ -category with finite colimits (or a stable ∞ -category).

Problem: Let \mathscr{C} be an ∞ -category with finite colimits (or a stable ∞ -category). Then the (triangulated) category $h_1\mathscr{C}$ inherits (co)products from \mathscr{C} , but it does not have pushouts (or pullbacks) in general because $h_1\mathscr{C}$ forgets about homotopy coherence. $(h_1(\mathscr{C}^{r}) \neq (h_1\mathscr{C})^{r}.)$

Problem: Let \mathscr{C} be an ∞ -category with finite colimits (or a stable ∞ -category). Then the (triangulated) category $h_1\mathscr{C}$ inherits (co)products from \mathscr{C} , but it does not have pushouts (or pullbacks) in general because $h_1\mathscr{C}$ forgets about homotopy coherence. $(h_1(\mathscr{C}^{r}) \neq (h_1\mathscr{C})^{r}.)$

Pushouts or pullbacks in $\mathscr C$ become <u>weak</u> pushouts/pullbacks in $h_1 \mathscr C$.

Problem: Let \mathscr{C} be an ∞ -category with finite colimits (or a stable ∞ -category). Then the (triangulated) category $h_1\mathscr{C}$ inherits (co)products from \mathscr{C} , but it does not have pushouts (or pullbacks) in general because $h_1\mathscr{C}$ forgets about homotopy coherence. $(h_1(\mathscr{C}^{r}) \neq (h_1\mathscr{C})^{r}.)$

Pushouts or pullbacks in ${\mathscr C}$ become $\underline{\mathsf{weak}}$ pushouts/pullbacks in $h_1 {\mathscr C}.$

In what sense does $h_n \mathscr{C}$ have better (co)limits?

Problem: Let \mathscr{C} be an ∞ -category with finite colimits (or a stable ∞ -category). Then the (triangulated) category $h_1\mathscr{C}$ inherits (co)products from \mathscr{C} , but it does not have pushouts (or pullbacks) in general because $h_1\mathscr{C}$ forgets about homotopy coherence. $(h_1(\mathscr{C}^{r}) \neq (h_1\mathscr{C})^{r}.)$

Pushouts or pullbacks in ${\mathscr C}$ become <u>weak</u> pushouts/pullbacks in $h_1 {\mathscr C}$.

In what sense does $h_n \mathcal{C}$ have better (co)limits?

Definition

Let \mathscr{C} be an ∞ -category and $t \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$.

• $x \in \mathscr{C}$ is weakly initial of order t if $map_{\mathscr{C}}(x, y)$ is (t-1)-connected $\forall y \in \mathscr{C}$.

Problem: Let \mathscr{C} be an ∞ -category with finite colimits (or a stable ∞ -category). Then the (triangulated) category $h_1\mathscr{C}$ inherits (co)products from \mathscr{C} , but it does not have pushouts (or pullbacks) in general because $h_1\mathscr{C}$ forgets about homotopy coherence. $(h_1(\mathscr{C}^{r}) \neq (h_1\mathscr{C})^{r}.)$

Pushouts or pullbacks in ${\mathscr C}$ become $\underline{\mathsf{weak}}$ pushouts/pullbacks in $h_1 {\mathscr C}.$

In what sense does $h_n \mathcal{C}$ have better (co)limits?

Definition

Let \mathscr{C} be an ∞ -category and $t \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$.

- $x \in \mathscr{C}$ is weakly initial of order t if $map_{\mathscr{C}}(x, y)$ is (t-1)-connected $\forall y \in \mathscr{C}$.
- Let $F: K \to \mathscr{C}$ be a K-diagram in \mathscr{C} where K is a simplicial set. A weak colimit of F of order t is a weakly initial object in $\mathscr{C}_{F/}$ of order t. ($\mathscr{C}_{F/}$ is the ∞ -category of cocones on F.)

Problem: Let \mathscr{C} be an ∞ -category with finite colimits (or a stable ∞ -category). Then the (triangulated) category $h_1\mathscr{C}$ inherits (co)products from \mathscr{C} , but it does not have pushouts (or pullbacks) in general because $h_1\mathscr{C}$ forgets about homotopy coherence. $(h_1(\mathscr{C}^{r}) \neq (h_1\mathscr{C})^{r}.)$

Pushouts or pullbacks in ${\mathscr C}$ become $\underline{\mathsf{weak}}$ pushouts/pullbacks in $h_1 {\mathscr C}.$

In what sense does $h_n \mathcal{C}$ have better (co)limits?

Definition

Let \mathscr{C} be an ∞ -category and $t \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$.

- $x \in \mathscr{C}$ is weakly initial of order t if $map_{\mathscr{C}}(x, y)$ is (t-1)-connected $\forall y \in \mathscr{C}$.
- Let $F: K \to \mathscr{C}$ be a K-diagram in \mathscr{C} where K is a simplicial set. A weak colimit of F of order t is a weakly initial object in $\mathscr{C}_{F/}$ of order t. ($\mathscr{C}_{F/}$ is the ∞ -category of cocones on F.)

Example

• $t = \infty$: standard notions of initial object and colimit in an ∞ -category.

Problem: Let \mathscr{C} be an ∞ -category with finite colimits (or a stable ∞ -category). Then the (triangulated) category $h_1\mathscr{C}$ inherits (co)products from \mathscr{C} , but it does not have pushouts (or pullbacks) in general because $h_1\mathscr{C}$ forgets about homotopy coherence. $(h_1(\mathscr{C}^{r}) \neq (h_1\mathscr{C})^{r}.)$

Pushouts or pullbacks in ${\mathscr C}$ become $\underline{\mathsf{weak}}$ pushouts/pullbacks in $h_1 {\mathscr C}.$

In what sense does $h_n \mathcal{C}$ have better (co)limits?

Definition

Let \mathscr{C} be an ∞ -category and $t \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$.

- $x \in \mathscr{C}$ is weakly initial of order t if $map_{\mathscr{C}}(x, y)$ is (t-1)-connected $\forall y \in \mathscr{C}$.
- Let $F: K \to \mathscr{C}$ be a K-diagram in \mathscr{C} where K is a simplicial set. A weak colimit of F of order t is a weakly initial object in $\mathscr{C}_{F/}$ of order t. ($\mathscr{C}_{F/}$ is the ∞ -category of cocones on F.)

Example

- $t = \infty$: standard notions of initial object and colimit in an ∞ -category.
- t = 0: classical notions of weakly initial object and weak colimit.

<ロト <回ト < 注ト < 注)

Let \mathscr{C} be an ∞ -category and K a simplicial set.

Let \mathscr{C} be an ∞ -category and K a simplicial set. The comparison between colimits in \mathscr{C} and in $h_n \mathscr{C}$ is related to the properties of the canonical forgetful functors

 $\Phi_n^{\mathcal{K}} \colon \mathrm{h}_n(\mathscr{C}^{\mathcal{K}}) \to \mathrm{h}_n(\mathscr{C})^{\mathcal{K}}.$

イロト イヨト イヨト

Let \mathscr{C} be an ∞ -category and K a simplicial set. The comparison between colimits in \mathscr{C} and in $h_n \mathscr{C}$ is related to the properties of the canonical forgetful functors

 $\Phi_n^{\mathcal{K}} \colon \mathrm{h}_n(\mathscr{C}^{\mathcal{K}}) \to \mathrm{h}_n(\mathscr{C})^{\mathcal{K}}.$

Proposition (R.)

Let \mathscr{C} be an ∞ -category and $n \geq 1$.

Suppose that C has K-colimits where dim(K) = d. Then h_nC admits weak K-colimits of order (n − d) and γ_n: C → h_nC preserves them.

Let \mathscr{C} be an ∞ -category and K a simplicial set. The comparison between colimits in \mathscr{C} and in $h_n \mathscr{C}$ is related to the properties of the canonical forgetful functors

 $\Phi_n^{\mathcal{K}} \colon \mathrm{h}_n(\mathscr{C}^{\mathcal{K}}) \to \mathrm{h}_n(\mathscr{C})^{\mathcal{K}}.$

Proposition (R.)

Let \mathscr{C} be an ∞ -category and $n \geq 1$.

- Suppose that C has K-colimits where dim(K) = d. Then h_nC admits weak K-colimits of order (n − d) and γ_n: C → h_nC preserves them.
- **2** Moreover, we have an equivalence of ∞ -categories:

$$\mathrm{h}_{n-d}(\mathrm{h}_n(\mathscr{C}^K)) \simeq \mathrm{h}_{n-d}((\mathrm{h}_n\mathscr{C})^K).$$

Let \mathscr{C} be an ∞ -category and K a simplicial set. The comparison between colimits in \mathscr{C} and in $h_n \mathscr{C}$ is related to the properties of the canonical forgetful functors

 $\Phi_n^{\mathcal{K}} \colon \mathrm{h}_n(\mathscr{C}^{\mathcal{K}}) \to \mathrm{h}_n(\mathscr{C})^{\mathcal{K}}.$

Proposition (R.)

Let \mathscr{C} be an ∞ -category and $n \geq 1$.

- Suppose that C has K-colimits where dim(K) = d. Then h_nC admits weak K-colimits of order (n − d) and γ_n: C → h_nC preserves them.
- ^{\bigcirc} Moreover, we have an equivalence of ∞ -categories:

$$\mathrm{h}_{n-d}(\mathrm{h}_n(\mathscr{C}^{K})) \simeq \mathrm{h}_{n-d}((\mathrm{h}_n\mathscr{C})^{K}).$$

If C admits (finite) colimits, then h_nC admits (finite) coproducts and weak pushouts of order (n − 1).

Let \mathscr{C} be an ∞ -category and K a simplicial set. The comparison between colimits in \mathscr{C} and in $h_n \mathscr{C}$ is related to the properties of the canonical forgetful functors

 $\Phi_n^{\mathcal{K}} \colon \mathrm{h}_n(\mathscr{C}^{\mathcal{K}}) \to \mathrm{h}_n(\mathscr{C})^{\mathcal{K}}.$

Proposition (R.)

Let \mathscr{C} be an ∞ -category and $n \geq 1$.

Suppose that C has K-colimits where dim(K) = d. Then h_nC admits weak K-colimits of order (n − d) and γ_n: C → h_nC preserves them.

⁽²⁾ Moreover, we have an equivalence of ∞ -categories:

$$\mathrm{h}_{n-d}(\mathrm{h}_n(\mathscr{C}^{\kappa})) \simeq \mathrm{h}_{n-d}((\mathrm{h}_n\mathscr{C})^{\kappa}).$$

- If 𝔅 admits (finite) colimits, then h_n𝔅 admits (finite) coproducts and weak pushouts of order (n − 1).
- Suppose that \mathscr{C} admits finite colimits. If $\gamma_n : \mathscr{C} \to h_n \mathscr{C}$ preserves finite colimits, then γ_n is an equivalence.

< □ > < □ > < □ > < □ > < □ >

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let $\mathscr C$ be a stable ∞ -category. The homotopy *n*-category $\mathrm{h}_n \mathscr C$ satisfies:

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let $\mathscr C$ be a stable ∞ -category. The homotopy *n*-category $h_n \mathscr C$ satisfies:

• $h_n \mathscr{C}$ has a zero object and finite (co)products.

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let ${\mathscr C}$ be a stable ∞ -category. The homotopy *n*-category $\mathrm{h}_n {\mathscr C}$ satisfies:

h_n C has a zero object and finite (co)products.
 h_n C has weak pushouts and weak pullbacks of order (n - 1).

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let ${\mathscr C}$ be a stable ∞ -category. The homotopy *n*-category $\mathrm{h}_n {\mathscr C}$ satisfies:

- h_n C has a zero object and finite (co)products.
 h_n C has weak pushouts and weak pullbacks of order (n 1).
- **2** A square is a weak pushout of order (n-1) if and only if it is a weak pullback of order (n-1).

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let ${\mathscr C}$ be a stable ∞ -category. The homotopy *n*-category $\mathrm{h}_n {\mathscr C}$ satisfies:

- h_n C has a zero object and finite (co)products.
 h_n C has weak pushouts and weak pullbacks of order (n 1).
- **2** A square is a weak pushout of order (n-1) if and only if it is a weak pullback of order (n-1).
- **③** There is an equivalence $\Sigma \colon h_n \mathscr{C} \simeq h_n \mathscr{C}$

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let ${\mathscr C}$ be a stable ∞ -category. The homotopy *n*-category $\mathrm{h}_n {\mathscr C}$ satisfies:

- h_n C has a zero object and finite (co)products.
 h_n C has weak pushouts and weak pullbacks of order (n 1).
- 3 A square is a weak pushout of order (n-1) if and only if it is a weak pullback of order (n-1).
- There is an equivalence $\Sigma \colon h_n \mathscr{C} \simeq h_n \mathscr{C}$ and natural weak pushouts of order (n-1):

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let ${\mathscr C}$ be a stable ∞ -category. The homotopy *n*-category $\mathrm{h}_n {\mathscr C}$ satisfies:

- h_n C has a zero object and finite (co)products.
 h_n C has weak pushouts and weak pullbacks of order (n 1).
- 3 A square is a weak pushout of order (n-1) if and only if it is a weak pullback of order (n-1).
- There is an equivalence $\Sigma \colon h_n \mathscr{C} \simeq h_n \mathscr{C}$ and natural weak pushouts of order (n-1):

Do (1)–(3) give a sufficiently good notion of a stable *n*-category (for n > 2)?

(日)

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let ${\mathscr C}$ be a stable ∞ -category. The homotopy *n*-category $\mathrm{h}_n {\mathscr C}$ satisfies:

- h_n C has a zero object and finite (co)products.
 h_n C has weak pushouts and weak pullbacks of order (n 1).
- 3 A square is a weak pushout of order (n-1) if and only if it is a weak pullback of order (n-1).
- There is an equivalence Σ: h_n C ≃ h_n C and natural weak pushouts of order (n 1):

Do (1)–(3) give a sufficiently good notion of a stable *n*-category (for n > 2)? Some evidence:

• \mathscr{D} satisfies (1)–(3) and $n > 2 \Rightarrow h_1(\mathscr{D})$ is triangulated.

イロト 不得 トイヨト イヨト

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let ${\mathscr C}$ be a stable ∞ -category. The homotopy *n*-category $\mathrm{h}_n {\mathscr C}$ satisfies:

- h_n C has a zero object and finite (co)products.
 h_n C has weak pushouts and weak pullbacks of order (n 1).
- 3 A square is a weak pushout of order (n-1) if and only if it is a weak pullback of order (n-1).
- There is an equivalence Σ: h_n C ≃ h_n C and natural weak pushouts of order (n 1):

Do (1)–(3) give a sufficiently good notion of a stable *n*-category (for n > 2)? Some evidence:

- \mathscr{D} satisfies (1)–(3) and $n > 2 \Rightarrow h_1(\mathscr{D})$ is triangulated.
- $n = \infty$: stable ∞ -category.

< 日 > < 同 > < 三 > < 三 > 、

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let ${\mathscr C}$ be a stable ∞ -category. The homotopy *n*-category $\mathrm{h}_n {\mathscr C}$ satisfies:

- h_n C has a zero object and finite (co)products.
 h_n C has weak pushouts and weak pullbacks of order (n 1).
- 3 A square is a weak pushout of order (n-1) if and only if it is a weak pullback of order (n-1).
- There is an equivalence Σ: h_n C ≃ h_n C and natural weak pushouts of order (n 1):

Do (1)–(3) give a sufficiently good notion of a stable *n*-category (for n > 2)? Some evidence:

- \mathscr{D} satisfies (1)–(3) and $n > 2 \Rightarrow h_1(\mathscr{D})$ is triangulated.
- $n = \infty$: stable ∞ -category.
- n = 1: weaker than triangulated category. (a singular case?)

-

・ロト ・回 ト ・ ヨト ・

Definition

A weakly cocomplete *n*-category is an *n*-category \mathcal{C} which admits small coproducts and weak pushouts of order (n-1).

Definition

A weakly cocomplete *n*-category is an *n*-category \mathcal{C} which admits small coproducts and weak pushouts of order (n-1).

Example

The homotopy *n*-category of a cocomplete ∞ -category is a weakly cocomplete *n*-category.

・ロト ・回ト ・ヨト ・ヨ

Definition

A weakly cocomplete *n*-category is an *n*-category \mathcal{C} which admits small coproducts and weak pushouts of order (n-1).

Example

The homotopy *n*-category of a cocomplete ∞ -category is a weakly cocomplete *n*-category.

Remark (The role of n)

- A weakly cocomplete ∞ -category is a cocomplete ∞ -category.
- A cocomplete n-category is weakly k-cocomplete for all $k \ge n$.
- An n-category is weakly (n + 1)-cocomplete if and only if it is cocomplete.
- A weakly cocomplete n-category C admits weak K-colimits of order (n - dim(K)).

・ロト ・回ト ・ヨト ・ヨ

Compactly generated *n*-categories

-

・ロト ・日 ・ ・ ヨト ・
Definition

- Let ${\mathscr C}$ be a locally small $\infty\text{-category.}$
 - A set of *weak generators* of *C* is a set of objects *S* that jointly detect equivalences: a morphism *f* : *x* → *y* in *C* is an equivalence if and only if map_{*C*}(*g*, *x*) → map_{*C*}(*g*, *y*) is an equivalence for every *g* ∈ *S*.

Definition

Let ${\mathscr C}$ be a locally small $\infty\text{-category.}$

- A set of weak generators of C is a set of objects S that jointly detect equivalences: a morphism f: x → y in C is an equivalence if and only if map_C(g, x) → map_C(g, y) is an equivalence for every g ∈ S.
- Suppose that every diagram T: N → C is equipped with a distinguished cone T[▷]: N[▷] → C with cone object colim^w T.
 An object x ∈ C is compact (with respect to these distinguished cones) if for every diagram T: N → C, the map

 $\operatorname{colim}_{i\in\mathbb{N}}\operatorname{map}_{\mathscr{C}}(x,T(i))\to\operatorname{map}_{\mathscr{C}}(x,\operatorname{colim}^w T)$

is an equivalence.

< ロ > < 同 > < 回 > < 回 >

Definition

Let ${\mathscr C}$ be a locally small $\infty\text{-category.}$

- A set of weak generators of C is a set of objects S that jointly detect equivalences: a morphism f: x → y in C is an equivalence if and only if map_C(g, x) → map_C(g, y) is an equivalence for every g ∈ S.
- Suppose that every diagram T: N → C is equipped with a distinguished cone T[▷]: N[▷] → C with cone object colim^w T.
 An object x ∈ C is compact (with respect to these distinguished cones) if for every diagram T: N → C, the map

```
\operatorname{colim}_{i\in\mathbb{N}}\operatorname{map}_{\mathscr{C}}(x,T(i))\to\operatorname{map}_{\mathscr{C}}(x,\operatorname{colim}^w T)
```

is an equivalence.

Definition

A locally small *n*-category \mathcal{C} is called *compactly generated* if \mathcal{C} is a weakly cocomplete *n*-category and has a set of weak generators \mathcal{G} which consists of compact objects.

ヘロト 人間 ト 人 田 ト 人 田 ト

Example

• $\mathscr C$ finitely presentable ∞ -category, $n\geq 2 \Rightarrow \mathrm{h}_n(\mathscr C)$ is a compactly generated *n*-category

Example

- $\mathscr C$ finitely presentable ∞ -category, $n\geq 2 \Rightarrow \mathrm{h}_n(\mathscr C)$ is a compactly generated *n*-category
- $\mathscr C$ presentable ∞ -category, $n\geq 2 \Rightarrow \mathrm{h}_n(\mathscr C)$ is a localization of a compactly generated *n*-category

< □ > < □ > < □ > < □ > < □ >

Example

- $\mathscr C$ finitely presentable ∞ -category, $n\geq 2 \Rightarrow \mathrm{h}_n(\mathscr C)$ is a compactly generated *n*-category
- $\mathscr C$ presentable ∞ -category, $n\geq 2 \Rightarrow \mathrm{h}_n(\mathscr C)$ is a localization of a compactly generated *n*-category
- $\mathscr C$ finitely presentable stable ∞ -category $\Rightarrow h_n(\mathscr C)$ is a compactly generated *n*-category

イロト イヨト イヨト

Example

- $\mathscr C$ finitely presentable ∞ -category, $n\geq 2 \Rightarrow \mathrm{h}_n(\mathscr C)$ is a compactly generated *n*-category
- $\mathscr C$ presentable ∞ -category, $n\geq 2 \Rightarrow \mathrm{h}_n(\mathscr C)$ is a localization of a compactly generated *n*-category
- $\mathscr C$ finitely presentable stable ∞ -category $\Rightarrow h_n(\mathscr C)$ is a compactly generated *n*-category
- $\mathscr C$ presentable stable ∞ -category $\Rightarrow h_n(\mathscr C)$ is a localization of a compactly generated *n*-category

イロト イヨト イヨト

Example

- $\mathscr C$ finitely presentable ∞ -category, $n\geq 2 \Rightarrow \mathrm{h}_n(\mathscr C)$ is a compactly generated *n*-category
- $\mathscr C$ presentable ∞ -category, $n\geq 2 \Rightarrow \mathrm{h}_n(\mathscr C)$ is a localization of a compactly generated *n*-category
- $\mathscr C$ finitely presentable stable ∞ -category $\Rightarrow h_n(\mathscr C)$ is a compactly generated *n*-category
- $\mathscr C$ presentable stable ∞ -category $\Rightarrow h_n(\mathscr C)$ is a localization of a compactly generated *n*-category
- An (ordinary) locally finitely presentable category is compactly generated (also as an 1-category).

< □ > < □ > < □ > < □ > < □ >

Example

- $\mathscr C$ finitely presentable ∞ -category, $n\geq 2 \Rightarrow \mathrm{h}_n(\mathscr C)$ is a compactly generated *n*-category
- $\mathscr C$ presentable ∞ -category, $n\geq 2 \Rightarrow \mathrm{h}_n(\mathscr C)$ is a localization of a compactly generated *n*-category
- $\mathscr C$ finitely presentable stable ∞ -category $\Rightarrow h_n(\mathscr C)$ is a compactly generated *n*-category
- $\mathscr C$ presentable stable ∞ -category $\Rightarrow h_n(\mathscr C)$ is a localization of a compactly generated *n*-category

 An (ordinary) locally finitely presentable category is compactly generated (also as an 1-category).
 An (ordinary) locally presentable category is a localization of a compactly generated 1-category.

< □ > < □ > < □ > < □ > < □ >

Definition

Let \mathscr{C} be a locally small weakly cocomplete *n*-category. We say that \mathscr{C} satisfies Brown representability if for any given functor $F : \mathscr{C}^{\mathrm{op}} \to \mathscr{S}_{< n}$, F is representable if (and only if) the following conditions are satisfied.

< □ > < 同 > < 回 > < 回 >

Definition

Let \mathscr{C} be a locally small weakly cocomplete *n*-category. We say that \mathscr{C} satisfies Brown representability if for any given functor $F : \mathscr{C}^{\mathrm{op}} \to \mathscr{S}_{< n}$, F is representable if (and only if) the following conditions are satisfied.

• F sends small coproducts in \mathscr{C} to products in $\mathscr{S}_{< n}$.

< ロ > < 同 > < 回 > < 回 >

Definition

Let \mathscr{C} be a locally small weakly cocomplete *n*-category. We say that \mathscr{C} satisfies Brown representability if for any given functor $F : \mathscr{C}^{\mathrm{op}} \to \mathscr{S}_{< n}$, F is representable if (and only if) the following conditions are satisfied.

- F sends small coproducts in \mathscr{C} to products in $\mathscr{S}_{< n}$.
- For every weak pushout in ${\mathscr C}$ of order (n-1)

the canonical map $F(w) \longrightarrow F(y) \times_{F(x)} F(z)$ is (n-1)-connected.

< ロ > < 同 > < 回 > < 回 >

Definition

Let \mathscr{C} be a locally small weakly cocomplete *n*-category. We say that \mathscr{C} satisfies Brown representability if for any given functor $F : \mathscr{C}^{\mathrm{op}} \to \mathscr{S}_{< n}$, F is representable if (and only if) the following conditions are satisfied.

- F sends small coproducts in \mathscr{C} to products in $\mathscr{S}_{< n}$.
- For every weak pushout in ${\mathscr C}$ of order (n-1)

the canonical map $F(w) \longrightarrow F(y) \times_{F(x)} F(z)$ is (n-1)-connected.

Theorem (Nguyen-R.-Schrade)

Every compactly generated n-category & satisfies Brown representability.

Definition

Let \mathscr{C} be a locally small weakly cocomplete *n*-category. We say that \mathscr{C} satisfies Brown representability if for any given functor $F : \mathscr{C}^{\mathrm{op}} \to \mathscr{S}_{< n}$, F is representable if (and only if) the following conditions are satisfied.

- F sends small coproducts in \mathscr{C} to products in $\mathscr{S}_{< n}$.
- For every weak pushout in ${\mathscr C}$ of order (n-1)

the canonical map $F(w) \longrightarrow F(y) \times_{F(x)} F(z)$ is (n-1)-connected.

Theorem (Nguyen-R.-Schrade)

Every compactly generated n-category \mathcal{C} satisfies Brown representability. As a consequence, every localization of a compactly generated n-category also satisfies Brown representability.

Corollary

Let ${\mathscr C}$ be a presentable $\infty\text{-}category$ and let ${\mathscr D}$ be a locally small n-category.

Corollary

Let ${\mathscr C}$ be a presentable $\infty\text{-}category$ and let ${\mathscr D}$ be a locally small n-category.

() Suppose that \mathscr{C} is a stable. Then $h_n\mathscr{C}$ satisfies Brown representability.

Corollary

Let ${\mathscr C}$ be a presentable $\infty\text{-}category$ and let ${\mathscr D}$ be a locally small n-category.

• Suppose that \mathscr{C} is a stable. Then $h_n \mathscr{C}$ satisfies Brown representability. As a consequence, a functor $F : h_n \mathscr{C} \to \mathscr{D}$ is a left adjoint if and only if F preserves small coproducts and weak pushouts of order (n - 1).

< □ > < 同 > < 回 > < 回 >

Corollary

Let ${\mathscr C}$ be a presentable $\infty\text{-category}$ and let ${\mathscr D}$ be a locally small n-category.

- Suppose that C is a stable. Then h_nC satisfies Brown representability. As a consequence, a functor F: h_nC → D is a left adjoint if and only if F preserves small coproducts and weak pushouts of order (n − 1).
- **2** Suppose that $n \ge 2$. Then $h_n \mathscr{C}$ satisfies Brown representability.

< ロ > < 同 > < 回 > < 回 >

Corollary

- Let ${\mathscr C}$ be a presentable $\infty\text{-}category$ and let ${\mathscr D}$ be a locally small n-category.
 - Suppose that C is a stable. Then h_nC satisfies Brown representability. As a consequence, a functor F: h_nC → D is a left adjoint if and only if F preserves small coproducts and weak pushouts of order (n − 1).
 - Suppose that n ≥ 2. Then h_n C satisfies Brown representability. As a consequence, a functor F: h_n C → D is a left adjoint if and only if F preserves small coproducts and weak pushouts of order (n − 1).

< ロ > < 同 > < 回 > < 回 >

Corollary

- Let ${\mathscr C}$ be a presentable $\infty\text{-category}$ and let ${\mathscr D}$ be a locally small n-category.
 - Suppose that \mathscr{C} is a stable. Then $h_n \mathscr{C}$ satisfies Brown representability. As a consequence, a functor $F : h_n \mathscr{C} \to \mathscr{D}$ is a left adjoint if and only if F preserves small coproducts and weak pushouts of order (n - 1).
 - Suppose that n ≥ 2. Then h_n C satisfies Brown representability. As a consequence, a functor F: h_n C → D is a left adjoint if and only if F preserves small coproducts and weak pushouts of order (n − 1).

Remark

• *n* = 1: classical Brown representability context (Heller);

ヘロマ ヘロマ ヘロマ ヘロ

Corollary

- Let ${\mathscr C}$ be a presentable $\infty\text{-category}$ and let ${\mathscr D}$ be a locally small n-category.
 - Suppose that \mathscr{C} is a stable. Then $h_n \mathscr{C}$ satisfies Brown representability. As a consequence, a functor $F : h_n \mathscr{C} \to \mathscr{D}$ is a left adjoint if and only if F preserves small coproducts and weak pushouts of order (n - 1).
 - Suppose that n ≥ 2. Then h_n C satisfies Brown representability. As a consequence, a functor F: h_n C → D is a left adjoint if and only if F preserves small coproducts and weak pushouts of order (n − 1).

Remark

 n = 1: classical Brown representability context (Heller); n = ∞: context of LAFT

ヘロマ ヘロマ ヘビマ ヘビ

Corollary

- Let ${\mathscr C}$ be a presentable $\infty\text{-category}$ and let ${\mathscr D}$ be a locally small n-category.
 - Suppose that \mathscr{C} is a stable. Then $h_n \mathscr{C}$ satisfies Brown representability. As a consequence, a functor $F : h_n \mathscr{C} \to \mathscr{D}$ is a left adjoint if and only if F preserves small coproducts and weak pushouts of order (n - 1).
 - Suppose that n ≥ 2. Then h_n C satisfies Brown representability. As a consequence, a functor F: h_n C → D is a left adjoint if and only if F preserves small coproducts and weak pushouts of order (n − 1).

Remark

- n = 1: classical Brown representability context (Heller); n = ∞: context of LAFT
- Every locally presentable category C satisfies Brown representability.

Corollary

- Let ${\mathscr C}$ be a presentable $\infty\text{-}category$ and let ${\mathscr D}$ be a locally small n-category.
 - Suppose that \mathscr{C} is a stable. Then $h_n \mathscr{C}$ satisfies Brown representability. As a consequence, a functor $F : h_n \mathscr{C} \to \mathscr{D}$ is a left adjoint if and only if F preserves small coproducts and weak pushouts of order (n - 1).
 - Suppose that n ≥ 2. Then h_n C satisfies Brown representability. As a consequence, a functor F: h_n C → D is a left adjoint if and only if F preserves small coproducts and weak pushouts of order (n − 1).

Remark

- n = 1: classical Brown representability context (Heller); n = ∞: context of LAFT
- Every locally presentable category C satisfies Brown representability. A functor F: C → D is a left adjoint if and only if F preserves small coproducts and sends pushouts to <u>weak</u> pushouts.

Corollary

- Let ${\mathscr C}$ be a presentable $\infty\text{-}category$ and let ${\mathscr D}$ be a locally small n-category.
 - Suppose that \mathscr{C} is a stable. Then $h_n \mathscr{C}$ satisfies Brown representability. As a consequence, a functor $F : h_n \mathscr{C} \to \mathscr{D}$ is a left adjoint if and only if F preserves small coproducts and weak pushouts of order (n - 1).
 - Suppose that n ≥ 2. Then h_n C satisfies Brown representability. As a consequence, a functor F: h_n C → D is a left adjoint if and only if F preserves small coproducts and weak pushouts of order (n − 1).

Remark

- n = 1: classical Brown representability context (Heller); n = ∞: context of LAFT
- Every locally presentable category C satisfies Brown representability. A functor F: C → D is a left adjoint if and only if F preserves small coproducts and sends pushouts to <u>weak</u> pushouts.
- (Heller) $h_1(\mathcal{S})$ does not satisfy Brown representability.

Question 3: What about AFTs for general weakly (co)complete n-categories?

*ロト *個ト * ヨト * ヨ

Question 3: What about AFTs for general weakly (co)complete n-categories?

Definition

Let \mathscr{C} and \mathscr{D} be ∞ -categories and let $F \colon \mathscr{C} \to \mathscr{D}$ be a functor.

<ロト < 同ト < ヨト < ヨ)

Question 3: What about AFTs for general weakly (co)complete n-categories?

Definition

Let \mathscr{C} and \mathscr{D} be ∞ -categories and let $F \colon \mathscr{C} \to \mathscr{D}$ be a functor.

F satisfies the *h*-terminal object condition if F_{/d} admits a weakly terminal object of order 1 (⇐⇒ terminal in h(F_{/d})) for every d ∈ D.

< ロ > < 同 > < 回 > < 回 >

Question 3: What about AFTs for general weakly (co)complete n-categories?

Definition

Let \mathscr{C} and \mathscr{D} be ∞ -categories and let $F \colon \mathscr{C} \to \mathscr{D}$ be a functor.

- F satisfies the *h*-terminal object condition if F_{/d} admits a weakly terminal object of order 1 (⇐⇒ terminal in h(F_{/d})) for every d ∈ D.
- *F* satisfies the *(co)solution set condition* if $F_{/d}$ admits a small weakly terminal set for every $d \in \mathcal{D}$.

< ロ > < 同 > < 回 > < 回 >

Question 3: What about AFTs for general weakly (co)complete n-categories?

Definition

Let \mathscr{C} and \mathscr{D} be ∞ -categories and let $F \colon \mathscr{C} \to \mathscr{D}$ be a functor.

- F satisfies the *h*-terminal object condition if F_{/d} admits a weakly terminal object of order 1 (⇐⇒ terminal in h(F_{/d})) for every d ∈ D.
- *F* satisfies the *(co)solution set condition* if $F_{/d}$ admits a small weakly terminal set for every $d \in \mathcal{D}$.

Theorem ("n-GAFTs"; Nguyen-R.-Schrade)

Let $F: \mathscr{C} \to \mathscr{D}$ be a functor between n-categories.

Question 3: What about AFTs for general weakly (co)complete n-categories?

Definition

Let \mathscr{C} and \mathscr{D} be ∞ -categories and let $F \colon \mathscr{C} \to \mathscr{D}$ be a functor.

- F satisfies the *h*-terminal object condition if F_{/d} admits a weakly terminal object of order 1 (⇐⇒ terminal in h(F_{/d})) for every d ∈ D.
- *F* satisfies the *(co)solution set condition* if $F_{/d}$ admits a small weakly terminal set for every $d \in \mathcal{D}$.

Theorem ("n-GAFTs"; Nguyen-R.-Schrade)

Let $F: \mathscr{C} \to \mathscr{D}$ be a functor between n-categories.

• Suppose that $\mathscr C$ is a finitely weakly cocomplete n-category.

Question 3: What about AFTs for general weakly (co)complete n-categories?

Definition

Let \mathscr{C} and \mathscr{D} be ∞ -categories and let $F \colon \mathscr{C} \to \mathscr{D}$ be a functor.

- F satisfies the *h*-terminal object condition if F_{/d} admits a weakly terminal object of order 1 (⇐⇒ terminal in h(F_{/d})) for every d ∈ D.
- *F* satisfies the *(co)solution set condition* if $F_{/d}$ admits a small weakly terminal set for every $d \in \mathcal{D}$.

Theorem ("n-GAFTs"; Nguyen-R.-Schrade)

Let $F: \mathscr{C} \to \mathscr{D}$ be a functor between n-categories.

• Suppose that \mathcal{C} is a finitely weakly cocomplete n-category. Then F is a left adjoint if and only if F preserves finite coproducts, weak pushouts of order (n-1), and satisfies the h-terminal object condition.

Question 3: What about AFTs for general weakly (co)complete n-categories?

Definition

Let \mathscr{C} and \mathscr{D} be ∞ -categories and let $F \colon \mathscr{C} \to \mathscr{D}$ be a functor.

- F satisfies the *h*-terminal object condition if F_{/d} admits a weakly terminal object of order 1 (⇐⇒ terminal in h(F_{/d})) for every d ∈ D.
- *F* satisfies the *(co)solution set condition* if $F_{/d}$ admits a small weakly terminal set for every $d \in \mathcal{D}$.

Theorem ("n-GAFTs"; Nguyen-R.-Schrade)

Let $F: \mathscr{C} \to \mathscr{D}$ be a functor between n-categories.

- Suppose that \mathscr{C} is a finitely weakly cocomplete n-category. Then F is a left adjoint if and only if F preserves finite coproducts, weak pushouts of order (n-1), and satisfies the h-terminal object condition.
- Suppose that $n \ge 3$, \mathscr{C} is a locally small weakly cocomplete n-category and \mathscr{D} is 2-locally small.
General AFTs (without compact generators)

Question 3: What about AFTs for general weakly (co)complete n-categories?

Definition

Let \mathscr{C} and \mathscr{D} be ∞ -categories and let $F \colon \mathscr{C} \to \mathscr{D}$ be a functor.

- F satisfies the *h*-terminal object condition if F_{/d} admits a weakly terminal object of order 1 (⇐⇒ terminal in h(F_{/d})) for every d ∈ D.
- *F* satisfies the *(co)solution set condition* if $F_{/d}$ admits a small weakly terminal set for every $d \in \mathcal{D}$.

Theorem ("n-GAFTs"; Nguyen-R.-Schrade)

Let $F: \mathscr{C} \to \mathscr{D}$ be a functor between n-categories.

- Suppose that \mathscr{C} is a finitely weakly cocomplete n-category. Then F is a left adjoint if and only if F preserves finite coproducts, weak pushouts of order (n-1), and satisfies the h-terminal object condition.
- Suppose that $n \ge 3$, \mathscr{C} is a locally small weakly cocomplete n-category and \mathscr{D} is 2-locally small. Then F is a left adjoint if and only if F preserves small coproducts, weak pushouts of order (n 1), and satisfies the (co)solution set condition.