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AFTs and Brown representability

Theorem (LAFT for presentable ∞-categories; Lurie)

Let C and D be presentable ∞-categories and let S denote the ∞-category of
spaces.

A functor F : C → D is a left adjoint if and only if F preserves small colimits.

A functor F : Cop → S is representable (⇐⇒ F op is a left adjoint) if and
only if F sends small colimits in C to limits in S.

Theorem (classical Brown representability; Brown, Heller)

Let C be a (locally small) category with small coproducts, weak pushouts, and a
set of compact weak generators (e.g. Ho(CW c

∗ ), Ho(spectra), etc.).

A functor F : Cop → Set is representable if and only if F sends small
coproducts to products and weak pushouts to weak pullbacks.

A functor F : C → D is a left adjoint if and only if F preserves small
coproducts and weak pushouts.
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Questions

Question 1:
Compactness is crucial for Brown representability, partly as compensation for the
lack of general colimits. Is it also required for LAFT or is there a version of LAFT
for more general ∞-categories?

Question 2:
Is there a general context for Brown representability which unifies classical Brown
representability and LAFT for space-valued presheaves?
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A generalization of LAFT

Definition
We say that an ∞-category C has an essentially small colimit-dense subcategory
if there is an essentially small full subcategory C0 ⊂ C such that every object
x ∈ C is a colimit of a diagram K → C0 ⊂ C with values in C0 for some small
simplicial set K .

Theorem (“special SAFT”; Nguyen-R.-Schrade)

Let C be a locally small cocomplete ∞-category which has an essentially small
colimit-dense subcategory and let D be a locally small ∞-category. Then a
functor F : C → D is a left adjoint if and only if F preserves small colimits.

Outline of the proof:

F is a left adjoint if and only if F/d admits a terminal object for all d ∈ D.

F/d is locally small and admits small colimits.

Criterion: A locally small cocomplete ∞-category admits a terminal object if
and only if it admits a small weakly terminal set.

Show that F/d has a weakly terminal object.
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Back to Question 2

The goal is to introduce a Brown representability context which:

generalizes from ordinary categories to (n, 1)-categories

generalizes from classical homotopy categories to higher
homotopy categories

uses suitable generalizations of the notions of weak colimit,
weak generator, and compact object

bridges the gap between classical Brown representability and LAFT.
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(n, 1)-categories

Definition
An ∞-category C is an n-category, n ≥ 1, if:

given f , f ′ : ∆n → C such that f ' f ′(rel ∂∆n), then f = f ′.
(‘equivalent n-morphisms are equal’)

given f , f ′ : ∆m → C, m > n, such that f|∂∆m = f ′|∂∆m , then f = f ′.

(‘no m-morphisms for m > n’)

Example
1 n = 1: (nerves of) ordinary categories.

2 X Kan complex/∞-groupoid. Then: X ' (n-category) if and only if

πk(X ) = 0 for all k > n (
def
= n-truncated).

Proposition

Let C be an ∞-category. Then: C ' (n-category) if and only if mapC(x , y) is
(n − 1)-truncated for all x , y ∈ C.
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Higher homotopy categories

Let C be an ∞-category. There is a homotopy n-category hnC together with a
functor γn : C → hnC such that for every n-category D:

(− ◦ γn) : Fun(hnC,D)
∼=−→ Fun(C,D).

Construction (Lurie). The set of m-simplices
(
hnC

)
m

of hnC is

{skn∆m → C which extend to skn+1∆m}
' relative to skn−1∆m

Example (n = 1 – usual homotopy category h(C))

The 0-simplices (objects) of h1C are the objects of C. The 1-simplices
(morphisms) are the morphisms of C up to homotopy. The 2-simplices
(composition) correspond to equivalence classes of diagrams:

∂∆2

��

// C.

∆2

∃

==
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Higher weak colimits

Problem: Let C be an ∞-category with finite colimits (or a stable ∞-category).
Then the (triangulated) category h1C inherits (co)products from C, but it does
not have pushouts (or pullbacks) in general because h1C forgets about homotopy
coherence. (h1(Cp) 6= (h1C)p.)
Pushouts or pullbacks in C become weak pushouts/pullbacks in h1C.

In what sense does hnC have better (co)limits?

Definition

Let C be an ∞-category and t ∈ Z≥0 ∪ {∞}.
x ∈ C is weakly initial of order t if mapC(x , y) is (t − 1)-connected ∀ y ∈ C.

Let F : K → C be a K -diagram in C where K is a simplicial set. A weak
colimit of F of order t is a weakly initial object in CF/ of order t. (CF/ is
the ∞-category of cocones on F .)

Example
1 t =∞: standard notions of initial object and colimit in an ∞-category.

2 t = 0: classical notions of weakly initial object and weak colimit.
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Higher homotopy categories (ctd.)

Let C be an ∞-category and K a simplicial set. The comparison between colimits
in C and in hnC is related to the properties of the canonical forgetful functors

ΦK
n : hn(CK )→ hn(C)K .

Proposition (R.)

Let C be an ∞-category and n ≥ 1.

1 Suppose that C has K-colimits where dim(K ) = d. Then hnC admits weak
K-colimits of order (n − d) and γn : C → hnC preserves them.

2 Moreover, we have an equivalence of ∞-categories:

hn−d
(
hn(CK )

)
' hn−d

(
(hnC)K

)
.

3 If C admits (finite) colimits, then hnC admits (finite) coproducts and weak
pushouts of order (n − 1).

4 Suppose that C admits finite colimits. If γn : C → hnC preserves finite
colimits, then γn is an equivalence.
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Stable n-categories?

Conjecture (Antieau): There is a good theory of stable n-categories that lies
between stable ∞-categories and triangulated categories.

Let C be a stable ∞-category. The homotopy n-category hnC satisfies:
1 hnC has a zero object and finite (co)products.

hnC has weak pushouts and weak pullbacks of order (n − 1).
2 A square is a weak pushout of order (n − 1) if and only if it is a weak

pullback of order (n − 1).
3 There is an equivalence Σ: hnC ' hnC and natural weak pushouts of

order (n − 1):
X //

��

0

��
0 // ΣX .

Do (1)–(3) give a sufficiently good notion of a stable n-category (for n > 2)?
Some evidence:

D satisfies (1)–(3) and n > 2 ⇒ h1(D) is triangulated.

n =∞: stable ∞-category.

n = 1: weaker than triangulated category. (a singular case?)
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Weakly cocomplete n-categories

Definition
A weakly cocomplete n-category is an n-category C which admits small
coproducts and weak pushouts of order (n − 1).

Example

The homotopy n-category of a cocomplete ∞-category is a weakly cocomplete
n-category.

Remark (The role of n)

A weakly cocomplete ∞-category is a cocomplete ∞-category.

A cocomplete n-category is weakly k-cocomplete for all k ≥ n.

An n-category is weakly (n + 1)-cocomplete if and only if it is cocomplete.

A weakly cocomplete n-category C admits weak K-colimits of order
(n − dim(K )).
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Compactly generated n-categories

Definition
Let C be a locally small ∞-category.

A set of weak generators of C is a set of objects G that jointly detect
equivalences: a morphism f : x → y in C is an equivalence if and only
if mapC(g , x)→ mapC(g , y) is an equivalence for every g ∈ G.

Suppose that every diagram T : N→ C is equipped with a distinguished
cone T . : N. → C with cone object colimwT .
An object x ∈ C is compact (with respect to these distinguished cones) if
for every diagram T : N→ C, the map

colimi∈NmapC(x ,T (i))→ mapC(x , colimwT )

is an equivalence.

Definition
A locally small n-category C is called compactly generated if C is a weakly
cocomplete n-category and has a set of weak generators G which consists of
compact objects.
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Compactly generated n-categories (ctd.)

Example

C finitely presentable ∞-category, n ≥ 2 ⇒ hn(C) is a compactly generated
n-category

C presentable ∞-category, n ≥ 2 ⇒ hn(C) is a localization of a compactly
generated n-category

C finitely presentable stable ∞-category ⇒ hn(C) is a compactly generated
n-category

C presentable stable ∞-category ⇒ hn(C) is a localization of a compactly
generated n-category

An (ordinary) locally finitely presentable category is compactly generated
(also as an 1-category).
An (ordinary) locally presentable category is a localization of a compactly
generated 1-category.
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Higher Brown representability

Definition
Let C be a locally small weakly cocomplete n-category. We say that C satisfies
Brown representability if for any given functor F : Cop → S<n, F is representable
if (and only if) the following conditions are satisfied.

F sends small coproducts in C to products in S<n.

For every weak pushout in C of order (n − 1)

x //

��

y

��
z // w

the canonical map F (w) −→ F (y)×F (x) F (z) is (n − 1)-connected.

Theorem (Nguyen-R.-Schrade)

Every compactly generated n-category C satisfies Brown representability.
As a consequence, every localization of a compactly generated n-category also
satisfies Brown representability.
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Higher Brown representability (ctd.)

Corollary

Let C be a presentable ∞-category and let D be a locally small n-category.

1 Suppose that C is a stable. Then hnC satisfies Brown representability.
As a consequence, a functor F : hnC → D is a left adjoint if and only if F
preserves small coproducts and weak pushouts of order (n − 1).

2 Suppose that n ≥ 2. Then hnC satisfies Brown representability.
As a consequence, a functor F : hnC → D is a left adjoint if and only if F
preserves small coproducts and weak pushouts of order (n − 1).

Remark

n = 1: classical Brown representability context (Heller); n =∞: context of
LAFT

Every locally presentable category C satisfies Brown representability.
A functor F : C → D is a left adjoint if and only if F preserves small
coproducts and sends pushouts to weak pushouts.

(Heller) h1(S) does not satisfy Brown representability.
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General AFTs (without compact generators)

Question 3: What about AFTs for general weakly (co)complete n-categories?

Definition
Let C and D be ∞-categories and let F : C → D be a functor.

F satisfies the h-terminal object condition if F/d admits a weakly terminal
object of order 1 (⇐⇒ terminal in h(F/d)) for every d ∈ D.

F satisfies the (co)solution set condition if F/d admits a small weakly
terminal set for every d ∈ D.

Theorem (“n-GAFTs”; Nguyen-R.-Schrade)

Let F : C → D be a functor between n-categories.

Suppose that C is a finitely weakly cocomplete n-category. Then F is a left
adjoint if and only if F preserves finite coproducts, weak pushouts of order
(n − 1), and satisfies the h-terminal object condition.

Suppose that n ≥ 3, C is a locally small weakly cocomplete n-category and
D is 2-locally small. Then F is a left adjoint if and only if F preserves small
coproducts, weak pushouts of order (n− 1), and satisfies the (co)solution set
condition.
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