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Introduction
The following general types of Questions have been extensively studied:

Let F : C → C′ be a functor between (sufficiently nice) homotopy theories.

I h(F ) : h(C) ' h(C′)
?⇒ C ' C′.

I
?⇒ K(C) ' K(C′).

Various versions of the Approximation Theorem (Waldhausen, Thomason,
Cisinski, Blumberg–Mandell,. . . )

Let C and C′ be (sufficiently nice) homotopy theories.

I h(C) ' h(C′)
?⇒ C ' C′. (Rigidity theorems, Tilting theory, etc.)

I
?⇒ K(C) ' K(C′).

K -theory of ∆ed categories (Neeman), Dugger-Shipley, Schlichting, . . .

I DC ' DC′
?⇒ C ' C′. (Renaudin, . . . .)

I
?⇒ K(C) ' K(C′).

Derivator K -theory (Maltsiniotis, Garkusha, Muro-R., . . . )

General Goal: Study the analogous Questions for the homotopy n-category
hn(C). In particular, introduce n-derivators and K -theory for higher homotopy
categories and higher derivators.

Today: How much of K (C) can be recovered from hn(C) (or from D(n)
C )?
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(n, 1)-categories (following [HTT, 2.3.4])

Definition
An ∞-category C is an n-category, n ≥ 1, if:

1 given f , f ′ : ∆n → C such that f ' f ′(rel ∂∆n), then f = f ′.
(‘equivalent n-morphisms are equal’)

2 given f , f ′ : ∆m → C, m > n, such that f|∂∆m = f ′|∂∆m , then f = f ′.

(‘no m-morphisms for m > n’)

Example
1 n = 1: (nerves of) ordinary categories.

2 X Kan complex/∞-groupoid. Then:

X ' n − category ⇐⇒ πk(X ) = 0 ∀ k > n (
def
= n-truncated).

Proposition

Let C be an ∞-category. Then:

C ' (n − category) ⇐⇒ mapC(x , y) is (n − 1)− truncated ∀x , y ∈ C.
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Higher homotopy categories I

Let C be an ∞-category. There is a homotopy n-category hnC together with a
functor γn : C → hnC such that for every n-category D:

(− ◦ γn) : Fun(hnC,D)
∼=−→ Fun(C,D).

Construction. (Lurie) The set of m-simplices
(
hnC

)
m

of hnC is

{skn∆m → C which extend to skn+1∆m}
' relative to skn−1∆m

Example (n = 1 – usual homotopy category h(C))

The 0-simplices (objects) of h1C are the objects of C. The 1-simplices
(morphisms) are the morphisms of C up to homotopy. The 2-simplices
(composition) correspond to equivalence classes of diagrams:

∂∆2

��

// C.

∆2

∃

==
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Higher weak colimits

Problem: Let C be a stable ∞-category. The (triangulated) category h1C

inherits (co)products from C, but it does not have pushouts or pullbacks in
general because h1C forgets about homotopy coherence. (h1(Cp) � (h1C)p.)
Pushouts or pullbacks in C become weak pushouts/pullbacks in h1C.

In what sense does hnC have better (co)limits?

Definition

Let C be an ∞-category and t ∈ Z≥0 ∪ {∞}.
1 x ∈ C is weakly initial of order t if mapC(x , y) is (t − 1)-connected ∀y ∈ C.

2 Let F : K → C a diagram in C where K is a simplicial set. A weak colimit
of F of order t is a weakly initial object in CF/ (=∞-category of cocones
over F ) of order t.

Example
1 (t =∞): We recover the standard notions of initial object and colimit in an
∞-category.

2 (t = 0): We recover the classical notions of weakly initial object and weak
colimit.
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Higher homotopy categories II

Let C be an ∞-category and K a simplicial set. The comparison between colimits
in C and in hnC is related to the properties of the canonical forgetful functors

ΦK
n : hn(CK )→ hn(C)K .

Proposition

Let C be an ∞-category, n ≥ 1.

1 Suppose that C has K-colimits where dim(K ) = d. Then hnC admits weak
K-colimits of order (n − d) and γn : C → hnC preserves these.

2 Moreover, we have an equivalence of ∞-categories:

hn−d
(
hn(CK )

)
' hn−d

(
(hnC)K

)
.

3 If C has finite colimits, then hnC has finite coproducts and weak pushouts
of order (n − 1).

4 Suppose that C has finite colimits. If γn : C → hnC preserves finite colimits,
then γn is an equivalence.
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Stable n-categories?

Conjecture (Antieau): There is a good theory of stable n-categories that lies
between stable ∞-categories and triangulated categories.

Let C be a stable ∞-category. Then the n-category hnC satisfies the following:
1 hnC has a zero object and finite (co)products.

hnC has weak pushouts and weak pullbacks of order (n − 1).
2 A square is a weak pushout of order (n − 1) iff it is a weak pullback of order

(n − 1).
3 There is an equivalence Σ: hnC ' hnC and weak pushouts of order (n − 1):

X //

��

0

��
0 // ΣX .

Is this a good notion of a stable n-category? The following hold:

hk(stable n − category) = stable k − category for k < n.
h1( stable n − category) = triangulated category if n > 2. (n-angulated?)
n =∞: We recover the definition of a stable ∞-category.
n = 1: weaker than a ∆ed category because weak pushouts (of order 0) do
not suffice for the construction of triangles. (A singular case?)
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K -theory of ∞-categories

Let C be a pointed ∞-category with finite colimits. We write Ar[n] = [n]→.
For example, for n = 0, 1, 2, these are the following posets:

• • // •

��

• // • //

��

•

��
• • // •

��
•

Let SnC ⊂ Fun(Ar[n],C) be the full subcategory spanned by X : Ar[n]→ C s.t.:

all diagonal values of X are zero objects.

every square in the diagram X is a pushout.

There is an equivalence SnC ' C[n−1]. Let S'n C ⊂ SnC be the associated
maximal ∞-subgroupoid in SnC. Then [n] 7→ S'n C defines a simplicial space.

Definition

K (C) : = Ω|S'• C|.

Fact. The inclusion Ω|Ob S'• C|
'−→ K (C) is a homotopy equivalence.
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K -theory of higher homotopy categories I

Let C be a pointed ∞-category with finite colimits and n ≥ 1. We equip hnC
with the canonical structure can, which consists of those squares in hnC

�→ hnC

which are equivalent to a square that arises from a pushout square in C.
(This is additional structure only for n = 1!)

We may use these squares to define an analogous S•-construction for hnC.
(All we need is a structure of distinguished squares.)
Let Sn(hnC, can) ⊆ Fun(Ar[n],hnC) be the full subcategory spanned by
X : Ar[n]→ hnC such that:

all diagonal values of X are zero objects.

every square in the diagram X is in can.

Let S'n (hnC, can) ⊂ Sn(hnC, can) be the maximal ∞-groupoid in Sn(hnC, can).
Then [n] 7→ S'n (hnC, can) is a simplicial space.

Definition

K (hnC, can) : = Ω|S'• (hnC, can)|.

G. Raptis Higher homotopy categories and K -theory 23 June 2020 9 / 12



K -theory of higher homotopy categories I
Let C be a pointed ∞-category with finite colimits and n ≥ 1.

We equip hnC
with the canonical structure can, which consists of those squares in hnC

�→ hnC

which are equivalent to a square that arises from a pushout square in C.
(This is additional structure only for n = 1!)

We may use these squares to define an analogous S•-construction for hnC.
(All we need is a structure of distinguished squares.)
Let Sn(hnC, can) ⊆ Fun(Ar[n],hnC) be the full subcategory spanned by
X : Ar[n]→ hnC such that:

all diagonal values of X are zero objects.

every square in the diagram X is in can.

Let S'n (hnC, can) ⊂ Sn(hnC, can) be the maximal ∞-groupoid in Sn(hnC, can).
Then [n] 7→ S'n (hnC, can) is a simplicial space.

Definition

K (hnC, can) : = Ω|S'• (hnC, can)|.

G. Raptis Higher homotopy categories and K -theory 23 June 2020 9 / 12



K -theory of higher homotopy categories I
Let C be a pointed ∞-category with finite colimits and n ≥ 1. We equip hnC
with the canonical structure can, which consists of those squares in hnC

�→ hnC

which are equivalent to a square that arises from a pushout square in C.
(This is additional structure only for n = 1!)

We may use these squares to define an analogous S•-construction for hnC.
(All we need is a structure of distinguished squares.)
Let Sn(hnC, can) ⊆ Fun(Ar[n],hnC) be the full subcategory spanned by
X : Ar[n]→ hnC such that:

all diagonal values of X are zero objects.

every square in the diagram X is in can.

Let S'n (hnC, can) ⊂ Sn(hnC, can) be the maximal ∞-groupoid in Sn(hnC, can).
Then [n] 7→ S'n (hnC, can) is a simplicial space.

Definition

K (hnC, can) : = Ω|S'• (hnC, can)|.

G. Raptis Higher homotopy categories and K -theory 23 June 2020 9 / 12



K -theory of higher homotopy categories I
Let C be a pointed ∞-category with finite colimits and n ≥ 1. We equip hnC
with the canonical structure can, which consists of those squares in hnC

�→ hnC

which are equivalent to a square that arises from a pushout square in C.
(This is additional structure only for n = 1!)

We may use these squares to define an analogous S•-construction for hnC.
(All we need is a structure of distinguished squares.)

Let Sn(hnC, can) ⊆ Fun(Ar[n],hnC) be the full subcategory spanned by
X : Ar[n]→ hnC such that:

all diagonal values of X are zero objects.

every square in the diagram X is in can.

Let S'n (hnC, can) ⊂ Sn(hnC, can) be the maximal ∞-groupoid in Sn(hnC, can).
Then [n] 7→ S'n (hnC, can) is a simplicial space.

Definition

K (hnC, can) : = Ω|S'• (hnC, can)|.

G. Raptis Higher homotopy categories and K -theory 23 June 2020 9 / 12



K -theory of higher homotopy categories I
Let C be a pointed ∞-category with finite colimits and n ≥ 1. We equip hnC
with the canonical structure can, which consists of those squares in hnC

�→ hnC

which are equivalent to a square that arises from a pushout square in C.
(This is additional structure only for n = 1!)

We may use these squares to define an analogous S•-construction for hnC.
(All we need is a structure of distinguished squares.)
Let Sn(hnC, can) ⊆ Fun(Ar[n],hnC) be the full subcategory spanned by
X : Ar[n]→ hnC such that:

all diagonal values of X are zero objects.

every square in the diagram X is in can.

Let S'n (hnC, can) ⊂ Sn(hnC, can) be the maximal ∞-groupoid in Sn(hnC, can).
Then [n] 7→ S'n (hnC, can) is a simplicial space.

Definition

K (hnC, can) : = Ω|S'• (hnC, can)|.

G. Raptis Higher homotopy categories and K -theory 23 June 2020 9 / 12



K -theory of higher homotopy categories I
Let C be a pointed ∞-category with finite colimits and n ≥ 1. We equip hnC
with the canonical structure can, which consists of those squares in hnC

�→ hnC

which are equivalent to a square that arises from a pushout square in C.
(This is additional structure only for n = 1!)

We may use these squares to define an analogous S•-construction for hnC.
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K -theory of higher homotopy categories II

Theorem
Let C be a pointed ∞-category with finite colimits. Then the canonical
comparison map K (C)→ K (hnC, can) is n-connected.

Remark. The connectivity estimate in the theorem is best possible in general.

Example (n = 1 and the Grothendieck group)

Suppose that C is a stable ∞-category. The 1-connectivity of

K (C)→ K (h1C, can)

recovers the well–known fact that K0(C) can be obtained from the triangulated
homotopy category h1C.

Corollary (conjectured by Antieau, connective case)

Let C and C′ be stable ∞-categories such that (hnC, can) ' (hnC
′, can). Then

the (n − 1)-truncations of K-theory are equivalent: Pn−1K (C) ' Pn−1K (C′).
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Derivators and Higher Derivators: An Informal Introduction

Let C be an ∞-category. There is an object that lies somewhere between C and
its homotopy category h1C: the functor of all homotopy categories

DC : K 7→ h1(CK ).

This is called the prederivator associated to C. If C is pointed and admits (finite)
colimits, then DC(K ) is pointed and restriction along u : K → L has a left adjoint

u! : DC(K )→ DC(L).

In this case, DC is a pointed right derivator. Homotopy coherence and homotopy
Kan extensions are encoded in the derivator. The theory of derivators axiomatizes
the properties of such functors D and focuses on homotopy Kan extensions as the
basic feature of a homotopy theory. (Grothendieck, Heller, Franke, . . . )

The notion of a derivator generalizes to ∞-categories. The main example is the
functor of homotopy n-categories of a (sufficiently nice) ∞-category C:

D(n)
C : K 7→ hn(CK ).

This is called the n-derivator associated to C and retains many of the structural
properties of C.
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K -theory of Higher Derivators

Let C be a pointed ∞-category with finite colimits. Let SkD(n)
C ⊆ DC(Ar[k]) be

the full subcategory spanned by X ∈ D(n)
C (Ar[k]) such that:

all diagonal values of X are zero objects.

every square in X is a pushout in D(n)
C (�).

There are equivalences: SkD(n)
C ' hn(SkC) ' hn(C[k−1]).

Let S'k D
(n)
C ⊂ SkD(n)

C be the maximal ∞-subgroupoid. Then [k] 7→ S'k D
(n)
C

defines a simplicial space.

Definition

K (D(n)
C ) : = Ω|S'• D

(n)
C |.

This agrees with the derivator K -theory of Maltsiniotis and Garkusha for n = 1.

Theorem

The canonical comparison map K (C)→ K (D(n)
C ) is (n + 1)-connected. Moreover,

derivator K-theory is the best approximation to K-theory by a functor which is
invariant under equivalences of higher derivators.

Remark. The map K (C)→ K (D(1)
C ) is not a π3-iso in general. (Muro-R.)
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