Higher homotopy categories and *K*-theory

Algebraic Topology Seminar University of Warwick

George Raptis (University of Regensburg)

23 June 2020

The following general types of Questions have been extensively studied:

イロン イロン イヨン イヨン

The following general types of Questions have been extensively studied:

• Let $F: \mathscr{C} \to \mathscr{C}'$ be a functor between (sufficiently nice) homotopy theories.

The following general types of Questions have been extensively studied:

- Let $F: \mathscr{C} \to \mathscr{C}'$ be a functor between (sufficiently nice) homotopy theories.
 - $h(F): h(\mathscr{C}) \simeq h(\mathscr{C}') \stackrel{?}{\Rightarrow} \mathscr{C} \simeq \mathscr{C}'.$

The following general types of Questions have been extensively studied:

• Let $F: \mathscr{C} \to \mathscr{C}'$ be a functor between (sufficiently nice) homotopy theories.

►
$$h(F): h(\mathscr{C}) \simeq h(\mathscr{C}') \stackrel{?}{\Rightarrow} \mathscr{C} \simeq \mathscr{C}'.$$

► $\stackrel{?}{\Rightarrow} K(\mathscr{C}) \simeq K(\mathscr{C}')$

The following general types of Questions have been extensively studied:

• Let $F: \mathscr{C} \to \mathscr{C}'$ be a functor between (sufficiently nice) homotopy theories.

$$\blacktriangleright \mathrm{h}(F)\colon \mathrm{h}(\mathscr{C})\simeq\mathrm{h}(\mathscr{C}')\stackrel{?}{\Rightarrow}\mathscr{C}\simeq\mathscr{C}'.$$

$$\stackrel{?}{\Rightarrow} K(\mathscr{C}) \simeq K(\mathscr{C}').$$

Various versions of the Approximation Theorem (Waldhausen, Thomason, Cisinski, Blumberg–Mandell,...)

The following general types of Questions have been extensively studied:

• Let $F: \mathscr{C} \to \mathscr{C}'$ be a functor between (sufficiently nice) homotopy theories.

$$\blacktriangleright \mathrm{h}(F) \colon \mathrm{h}(\mathscr{C}) \simeq \mathrm{h}(\mathscr{C}') \stackrel{?}{\Rightarrow} \mathscr{C} \simeq \mathscr{C}'.$$

$$\stackrel{?}{\Rightarrow} K(\mathscr{C}) \simeq K(\mathscr{C}').$$

Various versions of the Approximation Theorem (Waldhausen, Thomason, Cisinski, Blumberg–Mandell, \ldots)

• Let $\mathscr C$ and $\mathscr C'$ be (sufficiently nice) homotopy theories.

The following general types of Questions have been extensively studied:

• Let $F: \mathscr{C} \to \mathscr{C}'$ be a functor between (sufficiently nice) homotopy theories.

$$\blacktriangleright \mathrm{h}(F)\colon \mathrm{h}(\mathscr{C})\simeq \mathrm{h}(\mathscr{C}') \stackrel{?}{\Rightarrow} \mathscr{C}\simeq \mathscr{C}'.$$

$$\stackrel{?}{\Rightarrow} K(\mathscr{C}) \simeq K(\mathscr{C}').$$

Various versions of the Approximation Theorem (Waldhausen, Thomason, Cisinski, Blumberg–Mandell, \ldots)

- Let $\mathscr C$ and $\mathscr C'$ be (sufficiently nice) homotopy theories.
 - ▶ $h(\mathscr{C}) \simeq h(\mathscr{C}') \stackrel{?}{\Rightarrow} \mathscr{C} \simeq \mathscr{C}'.$ (Rigidity theorems, Tilting theory, etc.)

The following general types of Questions have been extensively studied:

• Let $F: \mathscr{C} \to \mathscr{C}'$ be a functor between (sufficiently nice) homotopy theories.

$$\blacktriangleright \mathrm{h}(F)\colon \mathrm{h}(\mathscr{C})\simeq \mathrm{h}(\mathscr{C}') \stackrel{?}{\Rightarrow} \mathscr{C}\simeq \mathscr{C}'.$$

$$\stackrel{?}{\Rightarrow} K(\mathscr{C}) \simeq K(\mathscr{C}').$$

Various versions of the Approximation Theorem (Waldhausen, Thomason, Cisinski, Blumberg–Mandell, \ldots)

• Let $\mathscr C$ and $\mathscr C'$ be (sufficiently nice) homotopy theories.

K-theory of Δ ed categories (Neeman), Dugger-Shipley, Schlichting, ...

The following general types of Questions have been extensively studied:

• Let $F: \mathscr{C} \to \mathscr{C}'$ be a functor between (sufficiently nice) homotopy theories.

$$\blacktriangleright \mathrm{h}(F)\colon \mathrm{h}(\mathscr{C})\simeq\mathrm{h}(\mathscr{C}')\stackrel{?}{\Rightarrow}\mathscr{C}\simeq\mathscr{C}'.$$

$$\stackrel{?}{\Rightarrow} K(\mathscr{C}) \simeq K(\mathscr{C}').$$

Various versions of the Approximation Theorem (Waldhausen, Thomason, Cisinski, Blumberg–Mandell, \ldots)

• Let $\mathscr C$ and $\mathscr C'$ be (sufficiently nice) homotopy theories.

K-theory of Δ ed categories (Neeman), Dugger-Shipley, Schlichting, ...

$$\blacktriangleright \mathbb{D}_{\mathscr{C}} \simeq \mathbb{D}_{\mathscr{C}'} \stackrel{?}{\Rightarrow} \mathscr{C} \simeq \mathscr{C}'. \text{ (Renaudin,)}$$

The following general types of Questions have been extensively studied:

• Let $F: \mathscr{C} \to \mathscr{C}'$ be a functor between (sufficiently nice) homotopy theories.

$$\blacktriangleright \mathrm{h}(F)\colon \mathrm{h}(\mathscr{C})\simeq \mathrm{h}(\mathscr{C}') \stackrel{?}{\Rightarrow} \mathscr{C}\simeq \mathscr{C}'.$$

$$\stackrel{?}{\Rightarrow} K(\mathscr{C}) \simeq K(\mathscr{C}').$$

Various versions of the Approximation Theorem (Waldhausen, Thomason, Cisinski, Blumberg–Mandell, \ldots)

• Let $\mathscr C$ and $\mathscr C'$ be (sufficiently nice) homotopy theories.

h(𝔅) ≃ h(𝔅') ⇒ 𝔅 ≃ 𝔅'. (Rigidity theorems, Tilting theory, etc.)
 ⇒ [?] 𝔅(𝔅) ≃ 𝔅(𝔅').

K-theory of Δ ed categories (Neeman), Dugger-Shipley, Schlichting, ...

$$\blacktriangleright \mathbb{D}_{\mathscr{C}} \simeq \mathbb{D}_{\mathscr{C}'} \stackrel{?}{\Rightarrow} \mathscr{C} \simeq \mathscr{C}'. \text{ (Renaudin,)}$$

$$\stackrel{?}{\Rightarrow} K(\mathscr{C}) \simeq K(\mathscr{C}').$$

Derivator K-theory (Maltsiniotis, Garkusha, Muro-R., ...)

The following general types of Questions have been extensively studied:

• Let $F: \mathscr{C} \to \mathscr{C}'$ be a functor between (sufficiently nice) homotopy theories.

$$\blacktriangleright \mathrm{h}(F)\colon \mathrm{h}(\mathscr{C})\simeq \mathrm{h}(\mathscr{C}') \stackrel{?}{\Rightarrow} \mathscr{C}\simeq \mathscr{C}'.$$

$$\stackrel{?}{\Rightarrow} K(\mathscr{C}) \simeq K(\mathscr{C}').$$

Various versions of the Approximation Theorem (Waldhausen, Thomason, Cisinski, Blumberg–Mandell, \ldots)

• Let $\mathscr C$ and $\mathscr C'$ be (sufficiently nice) homotopy theories.

h(𝔅) ≃ h(𝔅') ⇒ 𝔅 ≃ 𝔅'. (Rigidity theorems, Tilting theory, etc.)
 ⇒ [?] 𝔅(𝔅) ≃ 𝔅(𝔅').

K-theory of Δ ed categories (Neeman), Dugger-Shipley, Schlichting, ...

$$\blacktriangleright \mathbb{D}_{\mathscr{C}} \simeq \mathbb{D}_{\mathscr{C}'} \stackrel{?}{\Rightarrow} \mathscr{C} \simeq \mathscr{C}'. \text{ (Renaudin,)}$$

$$\stackrel{\prime}{\Rightarrow} K(9)$$

 $\stackrel{\prime}{\Rightarrow} K(\mathscr{C}) \simeq K(\mathscr{C}').$

Derivator K-theory (Maltsiniotis, Garkusha, Muro-R., ...)

General Goal: Study the analogous Questions for the *homotopy n-category* $h_n(\mathscr{C})$. In particular, introduce *n*-derivators and *K*-theory for higher homotopy categories and higher derivators.

The following general types of Questions have been extensively studied:

• Let $F: \mathscr{C} \to \mathscr{C}'$ be a functor between (sufficiently nice) homotopy theories.

$$\blacktriangleright \mathrm{h}(F)\colon \mathrm{h}(\mathscr{C})\simeq \mathrm{h}(\mathscr{C}') \stackrel{?}{\Rightarrow} \mathscr{C}\simeq \mathscr{C}'.$$

$$\stackrel{?}{\Rightarrow} K(\mathscr{C}) \simeq K(\mathscr{C}').$$

Various versions of the Approximation Theorem (Waldhausen, Thomason, Cisinski, Blumberg–Mandell, \ldots)

 $\bullet\,$ Let $\, \mathscr{C}\,$ and $\, \mathscr{C}'\,$ be (sufficiently nice) homotopy theories.

h(𝔅) ≃ h(𝔅') ⇒ 𝔅 ≃ 𝔅'. (Rigidity theorems, Tilting theory, etc.)
 ⇒ [?] 𝔅(𝔅) ≃ 𝔅(𝔅').

K-theory of Δ ed categories (Neeman), Dugger-Shipley, Schlichting, ...

$$\blacktriangleright \mathbb{D}_{\mathscr{C}} \simeq \mathbb{D}_{\mathscr{C}'} \stackrel{?}{\Rightarrow} \mathscr{C} \simeq \mathscr{C}'. \text{ (Renaudin,)}$$

$$\stackrel{?}{\Rightarrow} K(\mathscr{C}) \simeq K(\mathscr{C}').$$

Derivator K-theory (Maltsiniotis, Garkusha, Muro-R., ...)

General Goal: Study the analogous Questions for the *homotopy n-category* $h_n(\mathscr{C})$. In particular, introduce *n*-derivators and *K*-theory for higher homotopy categories and higher derivators.

Today: How much of $\mathcal{K}(\mathscr{C})$ can be recovered from $h_n(\mathscr{C})$ (or from $\mathbb{D}_{\mathscr{C}}^{(n)}$)?

メロト メタト メヨト メヨト

Definition

An ∞ -category $\mathscr C$ is an *n*-category, $n \geq 1$, if:

メロト メタト メヨト メヨト

Definition

An ∞ -category $\mathscr C$ is an *n*-category, $n \ge 1$, if:

• given $f, f': \Delta^n \to \mathscr{C}$ such that $f \simeq f'(\text{rel } \partial \Delta^n)$, then f = f'. ('equivalent *n*-morphisms are equal')

Definition

An ∞ -category $\mathscr C$ is an *n*-category, $n \ge 1$, if:

- given $f, f': \Delta^n \to \mathscr{C}$ such that $f \simeq f'(\text{rel } \partial \Delta^n)$, then f = f'. ('equivalent *n*-morphisms are equal')
- ② given f, f': ∆^m → C, m > n, such that $f_{|\partial \Delta^m} = f'_{|\partial \Delta^m}$, then f = f'. ('no m-morphisms for m > n')

Definition

An ∞ -category $\mathscr C$ is an *n*-category, $n \ge 1$, if:

• given $f, f': \Delta^n \to \mathscr{C}$ such that $f \simeq f'(\text{rel } \partial \Delta^n)$, then f = f'. ('equivalent *n*-morphisms are equal')

② given f, f': ∆^m → C, m > n, such that $f_{|\partial \Delta^m} = f'_{|\partial \Delta^m}$, then f = f'. ('no m-morphisms for m > n')

Example

Definition

An ∞ -category $\mathscr C$ is an *n*-category, $n \ge 1$, if:

• given $f, f': \Delta^n \to \mathscr{C}$ such that $f \simeq f'(\text{rel } \partial \Delta^n)$, then f = f'. ('equivalent *n*-morphisms are equal')

② given f, f': ∆^m → C, m > n, such that $f_{|\partial \Delta^m} = f'_{|\partial \Delta^m}$, then f = f'. ('no m-morphisms for m > n')

Example

• n = 1: (nerves of) ordinary categories.

Definition

An ∞ -category $\mathscr C$ is an *n*-category, $n \ge 1$, if:

• given $f, f': \Delta^n \to \mathscr{C}$ such that $f \simeq f'(\text{rel } \partial \Delta^n)$, then f = f'. ('equivalent *n*-morphisms are equal')

② given f, f': ∆^m → C, m > n, such that $f_{|\partial \Delta^m} = f'_{|\partial \Delta^m}$, then f = f'. ('no m-morphisms for m > n')

Example

• n = 1: (nerves of) ordinary categories.

2 X Kan complex/ ∞ -groupoid. Then:

$$X \simeq n - ext{category} \iff \pi_k(X) = 0 \ \forall \ k > n \ (\stackrel{def}{=} n ext{-truncated}).$$

Definition

An ∞ -category $\mathscr C$ is an *n*-category, $n \ge 1$, if:

• given $f, f': \Delta^n \to \mathscr{C}$ such that $f \simeq f'(\text{rel } \partial \Delta^n)$, then f = f'. ('equivalent *n*-morphisms are equal')

② given f, f': ∆^m → C, m > n, such that $f_{|\partial \Delta^m} = f'_{|\partial \Delta^m}$, then f = f'. ('no m-morphisms for m > n')

Example

• n = 1: (nerves of) ordinary categories.

2 X Kan complex/ ∞ -groupoid. Then:

$$X\simeq n- ext{category} \iff \pi_k(X)= 0 \; orall \; k>n \; (\stackrel{ ext{def}}{=} n ext{-truncated}).$$

Proposition

Let ${\mathscr C}$ be an $\infty\mbox{-}category.$ Then:

$$\mathscr{C}\simeq (\mathit{n-category}) \iff \mathrm{map}_{\mathscr{C}}(x,y) \ \textit{is} \ (\mathit{n}-1)-\textit{truncated} \ \forall x,y\in \mathscr{C}.$$

メロト メタト メヨト メヨト

Let \mathscr{C} be an ∞ -category. There is a **homotopy** *n*-category $h_n\mathscr{C}$ together with a functor $\gamma_n \colon \mathscr{C} \to h_n\mathscr{C}$

Let \mathscr{C} be an ∞ -category. There is a **homotopy** *n*-category $h_n\mathscr{C}$ together with a functor $\gamma_n \colon \mathscr{C} \to h_n\mathscr{C}$ such that for every *n*-category \mathscr{D} :

$$(-\circ \gamma_n)$$
: Fun $(h_n \mathscr{C}, \mathscr{D}) \xrightarrow{\cong}$ Fun $(\mathscr{C}, \mathscr{D})$.

Let \mathscr{C} be an ∞ -category. There is a **homotopy** *n*-category $h_n\mathscr{C}$ together with a functor $\gamma_n \colon \mathscr{C} \to h_n\mathscr{C}$ such that for every *n*-category \mathscr{D} :

$$(-\circ \gamma_n)$$
: Fun $(h_n \mathscr{C}, \mathscr{D}) \xrightarrow{\cong}$ Fun $(\mathscr{C}, \mathscr{D})$.

Construction. (Lurie) The set of *m*-simplices $(h_n \mathscr{C})_m$ of $h_n \mathscr{C}$ is

$$\{\operatorname{sk}_n\Delta^m \to \mathscr{C} \text{ which extend to } \operatorname{sk}_{n+1}\Delta^m\}$$

 \simeq relative to $\mathrm{sk}_{n-1}\Delta^m$

Let \mathscr{C} be an ∞ -category. There is a **homotopy** *n*-category $h_n\mathscr{C}$ together with a functor $\gamma_n \colon \mathscr{C} \to h_n\mathscr{C}$ such that for every *n*-category \mathscr{D} :

$$(-\circ \gamma_n)$$
: Fun $(h_n \mathscr{C}, \mathscr{D}) \xrightarrow{\cong}$ Fun $(\mathscr{C}, \mathscr{D})$.

Construction. (Lurie) The set of *m*-simplices $(h_n \mathscr{C})_m$ of $h_n \mathscr{C}$ is $\frac{\{\operatorname{sk}_n \Delta^m \to \mathscr{C} \text{ which extend to } \operatorname{sk}_{n+1} \Delta^m\}}{\simeq \text{ relative to } \operatorname{sk}_{n-1} \Delta^m}$

Example $(n = 1 - \text{usual homotopy category } h(\mathscr{C}))$ The 0-simplices (objects) of $h_1\mathscr{C}$ are the objects of \mathscr{C} .

Let \mathscr{C} be an ∞ -category. There is a **homotopy** *n*-category $h_n\mathscr{C}$ together with a functor $\gamma_n \colon \mathscr{C} \to h_n\mathscr{C}$ such that for every *n*-category \mathscr{D} :

$$(-\circ \gamma_n)$$
: Fun $(h_n \mathscr{C}, \mathscr{D}) \xrightarrow{\cong}$ Fun $(\mathscr{C}, \mathscr{D})$.

Construction. (Lurie) The set of *m*-simplices $(h_n \mathscr{C})_m$ of $h_n \mathscr{C}$ is

$$\frac{\{\operatorname{sk}_n\Delta^m \to \mathscr{C} \text{ which extend to } \operatorname{sk}_{n+1}\Delta^m\}}{\simeq \operatorname{relative to } \operatorname{sk}_{n-1}\Delta^m}$$

Example $(n = 1 - \text{usual homotopy category } h(\mathscr{C}))$

The 0-simplices (objects) of $h_1 \mathscr{C}$ are the objects of \mathscr{C} . The 1-simplices (morphisms) are the morphisms of \mathscr{C} up to homotopy.

Let \mathscr{C} be an ∞ -category. There is a **homotopy** *n*-category $h_n\mathscr{C}$ together with a functor $\gamma_n \colon \mathscr{C} \to h_n\mathscr{C}$ such that for every *n*-category \mathscr{D} :

$$(-\circ \gamma_n)$$
: Fun $(h_n \mathscr{C}, \mathscr{D}) \xrightarrow{\cong}$ Fun $(\mathscr{C}, \mathscr{D})$.

Construction. (Lurie) The set of *m*-simplices $(h_n \mathscr{C})_m$ of $h_n \mathscr{C}$ is

$$\frac{\{\mathrm{sk}_n\Delta^m \to \mathscr{C} \text{ which extend to } \mathrm{sk}_{n+1}\Delta^m\}}{\sim \text{ relative to } \mathrm{sk}_{n-1}\Delta^m}$$

Example $(n = 1 - \text{usual homotopy category } h(\mathscr{C}))$

The 0-simplices (objects) of $h_1 \mathscr{C}$ are the objects of \mathscr{C} . The 1-simplices (morphisms) are the morphisms of \mathscr{C} up to homotopy. The 2-simplices (composition) correspond to equivalence classes of diagrams:

メロト スピト メヨト メヨト

Problem: Let \mathscr{C} be a stable ∞ -category.

Problem: Let $\mathscr C$ be a stable ∞ -category. The (triangulated) category $h_1 \mathscr C$ inherits (co)products from $\mathscr C$,

Problem: Let \mathscr{C} be a stable ∞ -category. The (triangulated) category $h_1\mathscr{C}$ inherits (co)products from \mathscr{C} , but it does not have pushouts or pullbacks in general because $h_1\mathscr{C}$ forgets about homotopy coherence. $(h_1(\mathscr{C}^{\ulcorner}) \ncong (h_1\mathscr{C})^{\ulcorner})$.

Problem: Let \mathscr{C} be a stable ∞ -category. The (triangulated) category $h_1\mathscr{C}$ inherits (co)products from \mathscr{C} , but it does not have pushouts or pullbacks in general because $h_1\mathscr{C}$ forgets about homotopy coherence. $(h_1(\mathscr{C}^{\ulcorner}) \ncong (h_1\mathscr{C})^{\ulcorner}.)$ Pushouts or pullbacks in \mathscr{C} become <u>weak</u> pushouts/pullbacks in $h_1\mathscr{C}$.

Problem: Let \mathscr{C} be a stable ∞ -category. The (triangulated) category $h_1\mathscr{C}$ inherits (co)products from \mathscr{C} , but it does not have pushouts or pullbacks in general because $h_1\mathscr{C}$ forgets about homotopy coherence. $(h_1(\mathscr{C}^{\ulcorner}) \ncong (h_1\mathscr{C})^{\ulcorner}.)$ Pushouts or pullbacks in \mathscr{C} become <u>weak</u> pushouts/pullbacks in $h_1\mathscr{C}$.

In what sense does $h_n \mathscr{C}$ have better (co)limits?

Problem: Let \mathscr{C} be a stable ∞ -category. The (triangulated) category $h_1\mathscr{C}$ inherits (co)products from \mathscr{C} , but it does not have pushouts or pullbacks in general because $h_1\mathscr{C}$ forgets about homotopy coherence. $(h_1(\mathscr{C}^{\ulcorner}) \ncong (h_1\mathscr{C})^{\ulcorner})$.) Pushouts or pullbacks in \mathscr{C} become <u>weak</u> pushouts/pullbacks in $h_1\mathscr{C}$.

In what sense does $h_n \mathscr{C}$ have better (co)limits?

Definition

Let \mathscr{C} be an ∞ -category and $t \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$.

9 $x \in \mathscr{C}$ is weakly initial of order t if $\operatorname{map}_{\mathscr{C}}(x, y)$ is (t - 1)-connected $\forall y \in \mathscr{C}$.

Problem: Let \mathscr{C} be a stable ∞ -category. The (triangulated) category $h_1\mathscr{C}$ inherits (co)products from \mathscr{C} , but it does not have pushouts or pullbacks in general because $h_1\mathscr{C}$ forgets about homotopy coherence. $(h_1(\mathscr{C}^{\ulcorner}) \ncong (h_1\mathscr{C})^{\ulcorner})$.) Pushouts or pullbacks in \mathscr{C} become <u>weak</u> pushouts/pullbacks in $h_1\mathscr{C}$.

In what sense does $h_n \mathscr{C}$ have better (co)limits?

Definition

Let \mathscr{C} be an ∞ -category and $t \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$.

- **9** $x \in \mathscr{C}$ is weakly initial of order t if $\operatorname{map}_{\mathscr{C}}(x, y)$ is (t 1)-connected $\forall y \in \mathscr{C}$.
- **2** Let $F: K \to \mathscr{C}$ a diagram in \mathscr{C} where K is a simplicial set.

Problem: Let \mathscr{C} be a stable ∞ -category. The (triangulated) category $h_1\mathscr{C}$ inherits (co)products from \mathscr{C} , but it does not have pushouts or pullbacks in general because $h_1\mathscr{C}$ forgets about homotopy coherence. $(h_1(\mathscr{C}^{\ulcorner}) \ncong (h_1\mathscr{C})^{\ulcorner})$.) Pushouts or pullbacks in \mathscr{C} become <u>weak</u> pushouts/pullbacks in $h_1\mathscr{C}$.

In what sense does $h_n \mathscr{C}$ have better (co)limits?

Definition

Let \mathscr{C} be an ∞ -category and $t \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$.

- $x \in \mathscr{C}$ is weakly initial of order t if $\operatorname{map}_{\mathscr{C}}(x, y)$ is (t-1)-connected $\forall y \in \mathscr{C}$.
- Out F: K → C a diagram in C where K is a simplicial set. A weak colimit of F of order t is a weakly initial object in C_{F/} (=∞-category of cocones over F) of order t.

Problem: Let \mathscr{C} be a stable ∞ -category. The (triangulated) category $h_1\mathscr{C}$ inherits (co)products from \mathscr{C} , but it does not have pushouts or pullbacks in general because $h_1\mathscr{C}$ forgets about homotopy coherence. $(h_1(\mathscr{C}^{\ulcorner}) \ncong (h_1\mathscr{C})^{\ulcorner}.)$ Pushouts or pullbacks in \mathscr{C} become <u>weak</u> pushouts/pullbacks in $h_1\mathscr{C}$.

In what sense does $h_n \mathscr{C}$ have better (co)limits?

Definition

Let \mathscr{C} be an ∞ -category and $t \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$.

- **3** $x \in \mathscr{C}$ is weakly initial of order t if $map_{\mathscr{C}}(x, y)$ is (t 1)-connected $\forall y \in \mathscr{C}$.
- Out F: K → C a diagram in C where K is a simplicial set. A weak colimit of F of order t is a weakly initial object in C_{F/} (=∞-category of cocones over F) of order t.

Example

(t = ∞): We recover the standard notions of initial object and colimit in an ∞-category.

Problem: Let \mathscr{C} be a stable ∞ -category. The (triangulated) category $h_1\mathscr{C}$ inherits (co)products from \mathscr{C} , but it does not have pushouts or pullbacks in general because $h_1\mathscr{C}$ forgets about homotopy coherence. $(h_1(\mathscr{C}^{\ulcorner}) \ncong (h_1\mathscr{C})^{\ulcorner}.)$ Pushouts or pullbacks in \mathscr{C} become <u>weak</u> pushouts/pullbacks in $h_1\mathscr{C}$.

In what sense does $h_n \mathscr{C}$ have better (co)limits?

Definition

Let \mathscr{C} be an ∞ -category and $t \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$.

- **3** $x \in \mathscr{C}$ is weakly initial of order t if $map_{\mathscr{C}}(x, y)$ is (t 1)-connected $\forall y \in \mathscr{C}$.
- O Let F: K → C a diagram in C where K is a simplicial set. A weak colimit of F of order t is a weakly initial object in C_{F/} (=∞-category of cocones over F) of order t.

Example

- $(t = \infty)$: We recover the standard notions of initial object and colimit in an ∞ -category.
- (t = 0): We recover the classical notions of weakly initial object and weak colimit.

メロト メタト メヨト メヨト

Let \mathscr{C} be an ∞ -category and K a simplicial set.

< □ > < □ > < □ > < □ > < □ >

Let \mathscr{C} be an ∞ -category and K a simplicial set. The comparison between colimits in \mathscr{C} and in $h_n \mathscr{C}$ is related to the properties of the canonical forgetful functors

 $\Phi_n^{K} \colon \mathrm{h}_n(\mathscr{C}^{K}) \to \mathrm{h}_n(\mathscr{C})^{K}.$

Let \mathscr{C} be an ∞ -category and K a simplicial set. The comparison between colimits in \mathscr{C} and in $h_n \mathscr{C}$ is related to the properties of the canonical forgetful functors

 $\Phi_n^{K} \colon \mathrm{h}_n(\mathscr{C}^{K}) \to \mathrm{h}_n(\mathscr{C})^{K}.$

Proposition

Let $\mathscr C$ be an ∞ -category, $n \geq 1$.

Suppose that C has K-colimits where dim(K) = d. Then h_nC admits weak K-colimits of order (n − d) and γ_n: C → h_nC preserves these.

Let \mathscr{C} be an ∞ -category and K a simplicial set. The comparison between colimits in \mathscr{C} and in $h_n \mathscr{C}$ is related to the properties of the canonical forgetful functors

 $\Phi_n^{\mathsf{K}} \colon \mathrm{h}_n(\mathscr{C}^{\mathsf{K}}) \to \mathrm{h}_n(\mathscr{C})^{\mathsf{K}}.$

Proposition

Let $\mathscr C$ be an ∞ -category, $n \geq 1$.

Suppose that C has K-colimits where dim(K) = d. Then h_nC admits weak K-colimits of order (n − d) and γ_n: C → h_nC preserves these.

2 Moreover, we have an equivalence of ∞ -categories:

$$\mathrm{h}_{n-d}\big(\mathrm{h}_{n}(\mathscr{C}^{K})\big)\simeq\mathrm{h}_{n-d}\big((\mathrm{h}_{n}\mathscr{C})^{K}\big).$$

Let \mathscr{C} be an ∞ -category and K a simplicial set. The comparison between colimits in \mathscr{C} and in $h_n \mathscr{C}$ is related to the properties of the canonical forgetful functors

 $\Phi_n^{\mathsf{K}} \colon \mathrm{h}_n(\mathscr{C}^{\mathsf{K}}) \to \mathrm{h}_n(\mathscr{C})^{\mathsf{K}}.$

Proposition

- Let $\mathscr C$ be an ∞ -category, $n \geq 1$.
 - Suppose that C has K-colimits where dim(K) = d. Then h_nC admits weak K-colimits of order (n − d) and γ_n: C → h_nC preserves these.
 - ⁽²⁾ Moreover, we have an equivalence of ∞ -categories:

$$\mathrm{h}_{n-d}(\mathrm{h}_{n}(\mathscr{C}^{K})) \simeq \mathrm{h}_{n-d}((\mathrm{h}_{n}\mathscr{C})^{K}).$$

If 𝔅 has finite colimits, then h_n𝔅 has finite coproducts and weak pushouts of order (n − 1).

Let \mathscr{C} be an ∞ -category and K a simplicial set. The comparison between colimits in \mathscr{C} and in $h_n \mathscr{C}$ is related to the properties of the canonical forgetful functors

 $\Phi_n^{K} \colon \mathrm{h}_n(\mathcal{C}^{K}) \to \mathrm{h}_n(\mathcal{C})^{K}.$

Proposition

- Let $\mathscr C$ be an ∞ -category, $n \ge 1$.
 - Suppose that C has K-colimits where dim(K) = d. Then h_nC admits weak K-colimits of order (n − d) and γ_n: C → h_nC preserves these.
 - ⁽²⁾ Moreover, we have an equivalence of ∞ -categories:

$$\mathrm{h}_{n-d}(\mathrm{h}_n(\mathscr{C}^{\kappa})) \simeq \mathrm{h}_{n-d}((\mathrm{h}_n\mathscr{C})^{\kappa}).$$

- If 𝔅 has finite colimits, then h_n𝔅 has finite coproducts and weak pushouts of order (n − 1).
- Suppose that C has finite colimits. If γ_n: C → h_nC preserves finite colimits, then γ_n is an equivalence.

メロト スピト メヨト メヨト

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

< □ > < □ > < □ > < □ > < □ >

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let ${\mathscr C}$ be a stable $\infty\text{-category}.$ Then the $\textit{n}\text{-category}\ h_{\textit{n}}{\mathscr C}$ satisfies the following:

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let \mathscr{C} be a stable ∞ -category. Then the *n*-category $h_n \mathscr{C}$ satisfies the following:

• $h_n \mathscr{C}$ has a zero object and finite (co)products.

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let ${\mathscr C}$ be a stable $\infty\text{-category}.$ Then the $\textit{n}\text{-category}\ \mathrm{h}_{\textit{n}}{\mathscr C}$ satisfies the following:

• $h_n \mathscr{C}$ has a zero object and finite (co)products.

 $h_n \mathscr{C}$ has weak pushouts and weak pullbacks of order (n-1).

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let ${\mathscr C}$ be a stable $\infty\text{-category}.$ Then the $\textit{n}\text{-category}\ \mathrm{h}_{\textit{n}}{\mathscr C}$ satisfies the following:

- $h_n \mathscr{C}$ has a zero object and finite (co)products. $h_n \mathscr{C}$ has weak pushouts and weak pullbacks of order (n-1).
- 3 A square is a weak pushout of order (n-1) iff it is a weak pullback of order (n-1).

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let $\mathscr C$ be a stable ∞ -category. Then the *n*-category $\mathrm{h}_n \mathscr C$ satisfies the following:

- h_n C has a zero object and finite (co)products.
 h_n C has weak pushouts and weak pullbacks of order (n 1).
- A square is a weak pushout of order (n − 1) iff it is a weak pullback of order (n − 1).
- **③** There is an equivalence $\Sigma \colon h_n \mathscr{C} \simeq h_n \mathscr{C}$

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let ${\mathscr C}$ be a stable $\infty\text{-category}.$ Then the $\textit{n}\text{-category}\ \mathrm{h}_{\textit{n}}{\mathscr C}$ satisfies the following:

- h_n C has a zero object and finite (co)products.
 h_n C has weak pushouts and weak pullbacks of order (n 1).
- A square is a weak pushout of order (n − 1) iff it is a weak pullback of order (n − 1).
- **③** There is an equivalence $\Sigma \colon h_n \mathscr{C} \simeq h_n \mathscr{C}$ and weak pushouts of order (n-1):

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let ${\mathscr C}$ be a stable $\infty\text{-category}.$ Then the $\textit{n}\text{-category}\ \mathrm{h}_{\textit{n}}{\mathscr C}$ satisfies the following:

- h_n C has a zero object and finite (co)products.
 h_n C has weak pushouts and weak pullbacks of order (n 1).
- A square is a weak pushout of order (n − 1) iff it is a weak pullback of order (n − 1).
- **③** There is an equivalence $\Sigma \colon h_n \mathscr{C} \simeq h_n \mathscr{C}$ and weak pushouts of order (n-1):

Is this a good notion of a stable *n*-category?

イロン イ団 とく ヨン イヨン

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let ${\mathscr C}$ be a stable $\infty\text{-category}.$ Then the $\textit{n}\text{-category}\ \mathrm{h}_{\textit{n}}{\mathscr C}$ satisfies the following:

- In 𝒞 has a zero object and finite (co)products.
 In 𝒞 has weak pushouts and weak pullbacks of order (n − 1).
- ④ A square is a weak pushout of order (n − 1) iff it is a weak pullback of order (n − 1).
- **③** There is an equivalence $\Sigma \colon h_n \mathscr{C} \simeq h_n \mathscr{C}$ and weak pushouts of order (n-1):

Is this a good notion of a stable *n*-category? The following hold:

• h_k (stable *n* - category) = stable *k* - category for *k* < *n*.

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let ${\mathscr C}$ be a stable $\infty\text{-category}.$ Then the $\textit{n}\text{-category}\ \mathrm{h}_{\textit{n}}{\mathscr C}$ satisfies the following:

- ▶ h_n 𝒞 has a zero object and finite (co)products.
 ▶ h_n 𝒞 has weak pushouts and weak pullbacks of order (n − 1).
- ④ A square is a weak pushout of order (n − 1) iff it is a weak pullback of order (n − 1).
- **③** There is an equivalence $\Sigma \colon h_n \mathscr{C} \simeq h_n \mathscr{C}$ and weak pushouts of order (n-1):

Is this a good notion of a stable *n*-category? The following hold:

h_k(stable n - category) = stable k - category for k < n.
 h₁(stable n - category) = triangulated category if n > 2.

イロン イ団 とく ヨン イヨン

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let ${\mathscr C}$ be a stable $\infty\text{-category}.$ Then the $\textit{n}\text{-category}\ \mathrm{h}_{\textit{n}}{\mathscr C}$ satisfies the following:

- ▶ h_n 𝒞 has a zero object and finite (co)products.
 ▶ h_n 𝒞 has weak pushouts and weak pullbacks of order (n − 1).
- A square is a weak pushout of order (n − 1) iff it is a weak pullback of order (n − 1).
- **③** There is an equivalence $\Sigma \colon h_n \mathscr{C} \simeq h_n \mathscr{C}$ and weak pushouts of order (n-1):

Is this a good notion of a stable *n*-category? The following hold:

h_k(stable n - category) = stable k - category for k < n.
 h₁(stable n - category) = triangulated category if n > 2. (n-angulated?)

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let ${\mathscr C}$ be a stable $\infty\text{-category}.$ Then the $\textit{n}\text{-category}\ \mathrm{h}_{\textit{n}}{\mathscr C}$ satisfies the following:

- h_n C has a zero object and finite (co)products.
 h_n C has weak pushouts and weak pullbacks of order (n 1).
- A square is a weak pushout of order (n − 1) iff it is a weak pullback of order (n − 1).
- **③** There is an equivalence $\Sigma \colon h_n \mathscr{C} \simeq h_n \mathscr{C}$ and weak pushouts of order (n-1):

Is this a good notion of a stable *n*-category? The following hold:

- h_k (stable n category) = stable k category for k < n.
 - $h_1(\text{ stable } n \text{category}) = \text{triangulated category if } n > 2. (n-angulated?)$
- $n = \infty$: We recover the definition of a stable ∞ -category.

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let ${\mathscr C}$ be a stable $\infty\text{-category}.$ Then the $\textit{n}\text{-category}\ \mathrm{h}_{\textit{n}}{\mathscr C}$ satisfies the following:

- h_n C has a zero object and finite (co)products.
 h_n C has weak pushouts and weak pullbacks of order (n 1).
- A square is a weak pushout of order (n − 1) iff it is a weak pullback of order (n − 1).
- **③** There is an equivalence $\Sigma \colon h_n \mathscr{C} \simeq h_n \mathscr{C}$ and weak pushouts of order (n-1):

Is this a good notion of a stable *n*-category? The following hold:

• h_k (stable n - category) = stable k - category for k < n.

 $h_1(\text{ stable } n - \text{category}) = \text{triangulated category if } n > 2. (n-angulated?)$

- $n = \infty$: We recover the definition of a stable ∞ -category.
- n = 1: weaker than a Δ ed category

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let ${\mathscr C}$ be a stable $\infty\text{-category}.$ Then the $\textit{n}\text{-category}\ \mathrm{h}_{\textit{n}}{\mathscr C}$ satisfies the following:

- h_n C has a zero object and finite (co)products.
 h_n C has weak pushouts and weak pullbacks of order (n 1).
- ④ A square is a weak pushout of order (n − 1) iff it is a weak pullback of order (n − 1).
- **③** There is an equivalence $\Sigma \colon h_n \mathscr{C} \simeq h_n \mathscr{C}$ and weak pushouts of order (n-1):

Is this a good notion of a stable *n*-category? The following hold:

- h_k (stable n category) = stable k category for k < n.
 - $h_1(\text{ stable } n \text{category}) = \text{triangulated category if } n > 2. (n-angulated?)$
- $n = \infty$: We recover the definition of a stable ∞ -category.
- n = 1: weaker than a ∆ed category because weak pushouts (of order 0) do not suffice for the construction of triangles.

Conjecture (Antieau): There is a good theory of stable *n*-categories that lies between stable ∞ -categories and triangulated categories.

Let $\mathscr C$ be a stable ∞ -category. Then the *n*-category $\mathrm{h}_n \mathscr C$ satisfies the following:

- h_n C has a zero object and finite (co)products.
 h_n C has weak pushouts and weak pullbacks of order (n 1).
- ④ A square is a weak pushout of order (n − 1) iff it is a weak pullback of order (n − 1).
- **③** There is an equivalence $\Sigma \colon h_n \mathscr{C} \simeq h_n \mathscr{C}$ and weak pushouts of order (n-1):

Is this a good notion of a stable *n*-category? The following hold:

- h_k (stable n category) = stable k category for k < n.
 - $h_1(\text{ stable } n \text{category}) = \text{triangulated category if } n > 2. (n-angulated?)$
- $n = \infty$: We recover the definition of a stable ∞ -category.
- n = 1: weaker than a Δed category because weak pushouts (of order 0) do not suffice for the construction of triangles. (A singular case?)

メロト メタト メヨト メヨト

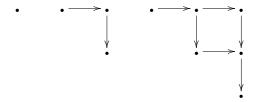
Let ${\mathscr C}$ be a pointed $\infty\text{-category}$ with finite colimits.

< □ > < □ > < □ > < □ > < □ >

Let \mathscr{C} be a pointed ∞ -category with finite colimits. We write $\operatorname{Ar}[n] = [n]^{\rightarrow}$.

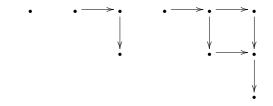
< □ > < □ > < □ > < □ > < □ >

Let \mathscr{C} be a pointed ∞ -category with finite colimits. We write $\operatorname{Ar}[n] = [n]^{\rightarrow}$. For example, for n = 0, 1, 2, these are the following posets:



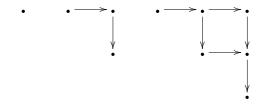
イロト イボト イヨト イヨ

Let \mathscr{C} be a pointed ∞ -category with finite colimits. We write $\operatorname{Ar}[n] = [n]^{\rightarrow}$. For example, for n = 0, 1, 2, these are the following posets:



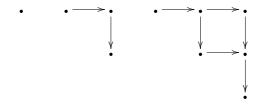
Let $S_n \mathscr{C} \subset \operatorname{Fun}(\operatorname{Ar}[n], \mathscr{C})$ be the full subcategory spanned by $X \colon \operatorname{Ar}[n] \to \mathscr{C}$ s.t.:

Let \mathscr{C} be a pointed ∞ -category with finite colimits. We write $\operatorname{Ar}[n] = [n]^{\rightarrow}$. For example, for n = 0, 1, 2, these are the following posets:



Let $S_n \mathscr{C} \subset Fun(Ar[n], \mathscr{C})$ be the full subcategory spanned by $X \colon Ar[n] \to \mathscr{C}$ s.t.: • all diagonal values of X are zero objects.

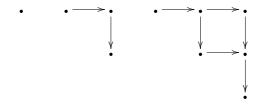
Let \mathscr{C} be a pointed ∞ -category with finite colimits. We write $\operatorname{Ar}[n] = [n]^{\rightarrow}$. For example, for n = 0, 1, 2, these are the following posets:



Let $\mathsf{S}_n \mathscr{C} \subset \operatorname{Fun}(\operatorname{Ar}[n], \mathscr{C})$ be the full subcategory spanned by $X \colon \operatorname{Ar}[n] \to \mathscr{C}$ s.t.:

- all diagonal values of X are zero objects.
- every square in the diagram X is a pushout.

Let \mathscr{C} be a pointed ∞ -category with finite colimits. We write $\operatorname{Ar}[n] = [n]^{\rightarrow}$. For example, for n = 0, 1, 2, these are the following posets:

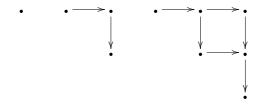


Let $S_n \mathscr{C} \subset \operatorname{Fun}(\operatorname{Ar}[n], \mathscr{C})$ be the full subcategory spanned by $X \colon \operatorname{Ar}[n] \to \mathscr{C}$ s.t.:

- all diagonal values of X are zero objects.
- every square in the diagram X is a pushout.

There is an equivalence $S_n \mathscr{C} \simeq \mathscr{C}^{[n-1]}$.

Let \mathscr{C} be a pointed ∞ -category with finite colimits. We write $\operatorname{Ar}[n] = [n]^{\rightarrow}$. For example, for n = 0, 1, 2, these are the following posets:



Let $S_n \mathscr{C} \subset \operatorname{Fun}(\operatorname{Ar}[n], \mathscr{C})$ be the full subcategory spanned by $X \colon \operatorname{Ar}[n] \to \mathscr{C}$ s.t.:

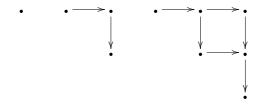
- all diagonal values of X are zero objects.
- every square in the diagram X is a pushout.

There is an equivalence $S_n \mathscr{C} \simeq \mathscr{C}^{[n-1]}$. Let $S_n^{\simeq} \mathscr{C} \subset S_n \mathscr{C}$ be the associated maximal ∞ -subgroupoid in $S_n \mathscr{C}$. Then $[n] \mapsto S_n^{\simeq} \mathscr{C}$ defines a simplicial space.

イロト イヨト イヨト

K-theory of ∞ -categories

Let \mathscr{C} be a pointed ∞ -category with finite colimits. We write $\operatorname{Ar}[n] = [n]^{\rightarrow}$. For example, for n = 0, 1, 2, these are the following posets:



Let $S_n \mathscr{C} \subset \operatorname{Fun}(\operatorname{Ar}[n], \mathscr{C})$ be the full subcategory spanned by $X \colon \operatorname{Ar}[n] \to \mathscr{C}$ s.t.:

- all diagonal values of X are zero objects.
- every square in the diagram X is a pushout.

There is an equivalence $S_n \mathscr{C} \simeq \mathscr{C}^{[n-1]}$. Let $S_n^{\simeq} \mathscr{C} \subset S_n \mathscr{C}$ be the associated maximal ∞ -subgroupoid in $S_n \mathscr{C}$. Then $[n] \mapsto S_n^{\simeq} \mathscr{C}$ defines a simplicial space.

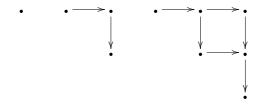
Definition

$$K(\mathscr{C}): = \Omega|\mathsf{S}^{\simeq}_{\bullet}\mathscr{C}|.$$

イロト イヨト イヨト

K-theory of ∞ -categories

Let \mathscr{C} be a pointed ∞ -category with finite colimits. We write $\operatorname{Ar}[n] = [n]^{\rightarrow}$. For example, for n = 0, 1, 2, these are the following posets:



Let $S_n \mathscr{C} \subset \operatorname{Fun}(\operatorname{Ar}[n], \mathscr{C})$ be the full subcategory spanned by $X \colon \operatorname{Ar}[n] \to \mathscr{C}$ s.t.:

- all diagonal values of X are zero objects.
- every square in the diagram X is a pushout.

There is an equivalence $S_n \mathscr{C} \simeq \mathscr{C}^{[n-1]}$. Let $S_n^{\simeq} \mathscr{C} \subset S_n \mathscr{C}$ be the associated maximal ∞ -subgroupoid in $S_n \mathscr{C}$. Then $[n] \mapsto S_n^{\simeq} \mathscr{C}$ defines a simplicial space.

Definition

$$K(\mathscr{C}): = \Omega|\mathsf{S}^{\simeq}_{\bullet}\mathscr{C}|.$$

Fact. The inclusion $\Omega | Ob S_{\bullet}^{\simeq} \mathscr{C} | \xrightarrow{\simeq} \mathcal{K}(\mathscr{C})$ is a homotopy equivalence.

メロト メタト メヨト メヨト

Let \mathscr{C} be a pointed ∞ -category with finite colimits and $n \geq 1$.

Let \mathscr{C} be a pointed ∞ -category with finite colimits and $n \ge 1$. We equip $h_n \mathscr{C}$ with the **canonical structure** can, which consists of those squares in $h_n \mathscr{C}$

 $\Box \to \mathrm{h}_n \mathscr{C}$

which are equivalent to a square that arises from a pushout square in \mathcal{C} . (This is additional structure only for n = 1!)

イロト イヨト イヨト

Let \mathscr{C} be a pointed ∞ -category with finite colimits and $n \ge 1$. We equip $h_n \mathscr{C}$ with the **canonical structure** can, which consists of those squares in $h_n \mathscr{C}$

 $\Box \to \mathrm{h}_n \mathscr{C}$

which are equivalent to a square that arises from a pushout square in \mathcal{C} . (This is additional structure only for n = 1!)

We may use these squares to define an analogous S_{\bullet} -construction for $h_n \mathscr{C}$. (All we need is a structure of *distinguished squares*.)

Let \mathscr{C} be a pointed ∞ -category with finite colimits and $n \ge 1$. We equip $h_n \mathscr{C}$ with the **canonical structure** can, which consists of those squares in $h_n \mathscr{C}$

 $\Box \to \mathrm{h}_n \mathscr{C}$

which are equivalent to a square that arises from a pushout square in \mathcal{C} . (This is additional structure only for n = 1!)

We may use these squares to define an analogous S_•-construction for $h_n \mathscr{C}$. (All we need is a structure of *distinguished squares*.) Let $S_n(h_n \mathscr{C}, \operatorname{can}) \subseteq \operatorname{Fun}(\operatorname{Ar}[n], h_n \mathscr{C})$ be the full subcategory spanned by $X : \operatorname{Ar}[n] \to h_n \mathscr{C}$ such that:

Let \mathscr{C} be a pointed ∞ -category with finite colimits and $n \ge 1$. We equip $h_n \mathscr{C}$ with the **canonical structure** can, which consists of those squares in $h_n \mathscr{C}$

 $\Box \to \mathrm{h}_n \mathscr{C}$

which are equivalent to a square that arises from a pushout square in \mathcal{C} . (This is additional structure only for n = 1!)

We may use these squares to define an analogous S_•-construction for $h_n \mathscr{C}$. (All we need is a structure of *distinguished squares*.) Let $S_n(h_n \mathscr{C}, \operatorname{can}) \subseteq \operatorname{Fun}(\operatorname{Ar}[n], h_n \mathscr{C})$ be the full subcategory spanned by $X : \operatorname{Ar}[n] \to h_n \mathscr{C}$ such that:

• all diagonal values of X are zero objects.

• every square in the diagram X is in can.

Let \mathscr{C} be a pointed ∞ -category with finite colimits and $n \ge 1$. We equip $h_n \mathscr{C}$ with the **canonical structure** can, which consists of those squares in $h_n \mathscr{C}$

 $\Box \to \mathrm{h}_n \mathscr{C}$

which are equivalent to a square that arises from a pushout square in \mathcal{C} . (This is additional structure only for n = 1!)

We may use these squares to define an analogous S_•-construction for $h_n \mathscr{C}$. (All we need is a structure of *distinguished squares*.) Let $S_n(h_n \mathscr{C}, \operatorname{can}) \subseteq \operatorname{Fun}(\operatorname{Ar}[n], h_n \mathscr{C})$ be the full subcategory spanned by $X : \operatorname{Ar}[n] \to h_n \mathscr{C}$ such that:

- all diagonal values of X are zero objects.
- every square in the diagram X is in can.

Let $S_n^{\simeq}(h_n \mathscr{C}, \operatorname{can}) \subset S_n(h_n \mathscr{C}, \operatorname{can})$ be the maximal ∞ -groupoid in $S_n(h_n \mathscr{C}, \operatorname{can})$. Then $[n] \mapsto S_n^{\simeq}(h_n \mathscr{C}, \operatorname{can})$ is a simplicial space.

Let \mathscr{C} be a pointed ∞ -category with finite colimits and $n \ge 1$. We equip $h_n \mathscr{C}$ with the **canonical structure** can, which consists of those squares in $h_n \mathscr{C}$

 $\Box \to \mathrm{h}_n \mathscr{C}$

which are equivalent to a square that arises from a pushout square in \mathcal{C} . (This is additional structure only for n = 1!)

We may use these squares to define an analogous S_•-construction for $h_n \mathscr{C}$. (All we need is a structure of *distinguished squares*.) Let $S_n(h_n \mathscr{C}, \operatorname{can}) \subseteq \operatorname{Fun}(\operatorname{Ar}[n], h_n \mathscr{C})$ be the full subcategory spanned by $X : \operatorname{Ar}[n] \to h_n \mathscr{C}$ such that:

- all diagonal values of X are zero objects.
- every square in the diagram X is in can.

Let $S_n^{\simeq}(h_n \mathscr{C}, \operatorname{can}) \subset S_n(h_n \mathscr{C}, \operatorname{can})$ be the maximal ∞ -groupoid in $S_n(h_n \mathscr{C}, \operatorname{can})$. Then $[n] \mapsto S_n^{\simeq}(h_n \mathscr{C}, \operatorname{can})$ is a simplicial space.

Definition

$$K(\mathbf{h}_n \mathscr{C}, \operatorname{can}): = \Omega | S^{\simeq}_{\bullet}(\mathbf{h}_n \mathscr{C}, \operatorname{can}) |.$$

メロト メタト メヨト メヨト

Theorem

Let \mathscr{C} be a pointed ∞ -category with finite colimits. Then the canonical comparison map $K(\mathscr{C}) \to K(h_n \mathscr{C}, \operatorname{can})$ is n-connected.

Theorem

Let \mathscr{C} be a pointed ∞ -category with finite colimits. Then the canonical comparison map $K(\mathscr{C}) \to K(h_n \mathscr{C}, \operatorname{can})$ is n-connected.

Remark. The connectivity estimate in the theorem is best possible in general.

Theorem

Let \mathscr{C} be a pointed ∞ -category with finite colimits. Then the canonical comparison map $K(\mathscr{C}) \to K(h_n \mathscr{C}, \operatorname{can})$ is n-connected.

Remark. The connectivity estimate in the theorem is best possible in general.

Example (n = 1 and the Grothendieck group)

Suppose that ${\mathscr C}$ is a stable ∞ -category.

Theorem

Let \mathscr{C} be a pointed ∞ -category with finite colimits. Then the canonical comparison map $K(\mathscr{C}) \to K(h_n \mathscr{C}, \operatorname{can})$ is n-connected.

Remark. The connectivity estimate in the theorem is best possible in general.

Example (n = 1 and the Grothendieck group)

Suppose that ${\mathscr C}$ is a stable $\infty\text{-category.}$ The 1-connectivity of

 $K(\mathcal{C}) \to K(\mathrm{h}_1\mathcal{C}, \mathrm{can})$

recovers the well-known fact that $K_0(\mathscr{C})$ can be obtained from the triangulated homotopy category $h_1\mathscr{C}$.

Theorem

Let \mathscr{C} be a pointed ∞ -category with finite colimits. Then the canonical comparison map $K(\mathscr{C}) \to K(h_n \mathscr{C}, \operatorname{can})$ is n-connected.

Remark. The connectivity estimate in the theorem is best possible in general.

Example (n = 1 and the Grothendieck group)

Suppose that ${\mathscr C}$ is a stable $\infty\text{-category.}$ The 1-connectivity of

 $K(\mathcal{C}) \to K(\mathrm{h}_1\mathcal{C}, \mathrm{can})$

recovers the well–known fact that $K_0(\mathscr{C})$ can be obtained from the triangulated homotopy category $h_1\mathscr{C}$.

Corollary (conjectured by Antieau, connective case)

Let \mathscr{C} and \mathscr{C}' be stable ∞ -categories such that $(h_n \mathscr{C}, \operatorname{can}) \simeq (h_n \mathscr{C}', \operatorname{can})$. Then the (n-1)-truncations of K-theory are equivalent: $P_{n-1}K(\mathscr{C}) \simeq P_{n-1}K(\mathscr{C}')$.

Derivators and Higher Derivators: An Informal Introduction Let \mathscr{C} be an ∞ -category.

Let $\mathscr C$ be an ∞ -category. There is an object that lies somewhere between $\mathscr C$ and its homotopy category $h_1 \mathscr C$: the functor of all homotopy categories

 $\mathbb{D}_{\mathscr{C}}\colon K\mapsto \mathrm{h}_1(\mathscr{C}^K).$

Let \mathscr{C} be an ∞ -category. There is an object that lies somewhere between \mathscr{C} and its homotopy category $h_1\mathscr{C}$: the functor of all homotopy categories

 $\mathbb{D}_{\mathscr{C}}\colon K\mapsto \mathrm{h}_1(\mathscr{C}^K).$

This is called the prederivator associated to \mathscr{C} .

Let \mathscr{C} be an ∞ -category. There is an object that lies somewhere between \mathscr{C} and its homotopy category $h_1\mathscr{C}$: the functor of all homotopy categories

 $\mathbb{D}_{\mathscr{C}}\colon K\mapsto \mathrm{h}_1(\mathscr{C}^K).$

This is called the prederivator associated to \mathscr{C} . If \mathscr{C} is pointed and admits (finite) colimits, then $\mathbb{D}_{\mathscr{C}}(K)$ is pointed and restriction along $u: K \to L$ has a left adjoint

 $u_{!}\colon \mathbb{D}_{\mathscr{C}}(K)\to \mathbb{D}_{\mathscr{C}}(L).$

Let \mathscr{C} be an ∞ -category. There is an object that lies somewhere between \mathscr{C} and its homotopy category $h_1\mathscr{C}$: the functor of all homotopy categories

 $\mathbb{D}_{\mathscr{C}}\colon K\mapsto \mathrm{h}_1(\mathscr{C}^K).$

This is called the prederivator associated to \mathscr{C} . If \mathscr{C} is pointed and admits (finite) colimits, then $\mathbb{D}_{\mathscr{C}}(K)$ is pointed and restriction along $u: K \to L$ has a left adjoint

 $u_!: \mathbb{D}_{\mathscr{C}}(K) \to \mathbb{D}_{\mathscr{C}}(L).$

In this case, $\mathbb{D}_{\mathscr{C}}$ is a pointed right derivator.

Let \mathscr{C} be an ∞ -category. There is an object that lies somewhere between \mathscr{C} and its homotopy category $h_1\mathscr{C}$: the functor of all homotopy categories

 $\mathbb{D}_{\mathscr{C}}\colon K\mapsto \mathrm{h}_1(\mathscr{C}^K).$

This is called the prederivator associated to \mathscr{C} . If \mathscr{C} is pointed and admits (finite) colimits, then $\mathbb{D}_{\mathscr{C}}(K)$ is pointed and restriction along $u: K \to L$ has a left adjoint

 $u_{!}\colon \mathbb{D}_{\mathscr{C}}(K)\to \mathbb{D}_{\mathscr{C}}(L).$

In this case, $\mathbb{D}_{\mathscr{C}}$ is a pointed right derivator. Homotopy coherence and homotopy Kan extensions are encoded in the derivator.

Let \mathscr{C} be an ∞ -category. There is an object that lies somewhere between \mathscr{C} and its homotopy category $h_1\mathscr{C}$: the functor of all homotopy categories

 $\mathbb{D}_{\mathscr{C}}\colon K\mapsto \mathrm{h}_1(\mathscr{C}^K).$

This is called the prederivator associated to \mathscr{C} . If \mathscr{C} is pointed and admits (finite) colimits, then $\mathbb{D}_{\mathscr{C}}(K)$ is pointed and restriction along $u: K \to L$ has a left adjoint

$$u_!: \mathbb{D}_{\mathscr{C}}(K) \to \mathbb{D}_{\mathscr{C}}(L).$$

In this case, $\mathbb{D}_{\mathscr{C}}$ is a pointed right derivator. Homotopy coherence and homotopy Kan extensions are encoded in the derivator. The theory of derivators axiomatizes the properties of such functors \mathbb{D}

Let \mathscr{C} be an ∞ -category. There is an object that lies somewhere between \mathscr{C} and its homotopy category $h_1\mathscr{C}$: the functor of all homotopy categories

 $\mathbb{D}_{\mathscr{C}}\colon K\mapsto \mathrm{h}_1(\mathscr{C}^K).$

This is called the prederivator associated to \mathscr{C} . If \mathscr{C} is pointed and admits (finite) colimits, then $\mathbb{D}_{\mathscr{C}}(K)$ is pointed and restriction along $u: K \to L$ has a left adjoint

 $u_!: \mathbb{D}_{\mathscr{C}}(K) \to \mathbb{D}_{\mathscr{C}}(L).$

In this case, $\mathbb{D}_{\mathscr{C}}$ is a pointed right derivator. Homotopy coherence and homotopy Kan extensions are encoded in the derivator. The theory of derivators axiomatizes the properties of such functors \mathbb{D} and focuses on homotopy Kan extensions as the basic feature of a homotopy theory. (Grothendieck, Heller, Franke, \ldots)

Let \mathscr{C} be an ∞ -category. There is an object that lies somewhere between \mathscr{C} and its homotopy category $h_1\mathscr{C}$: the functor of all homotopy categories

 $\mathbb{D}_{\mathscr{C}}\colon K\mapsto \mathrm{h}_1(\mathscr{C}^K).$

This is called the prederivator associated to \mathscr{C} . If \mathscr{C} is pointed and admits (finite) colimits, then $\mathbb{D}_{\mathscr{C}}(K)$ is pointed and restriction along $u: K \to L$ has a left adjoint

 $u_!: \mathbb{D}_{\mathscr{C}}(K) \to \mathbb{D}_{\mathscr{C}}(L).$

In this case, $\mathbb{D}_{\mathscr{C}}$ is a pointed right derivator. Homotopy coherence and homotopy Kan extensions are encoded in the derivator. The theory of derivators axiomatizes the properties of such functors \mathbb{D} and focuses on homotopy Kan extensions as the basic feature of a homotopy theory. (Grothendieck, Heller, Franke, ...)

The notion of a derivator generalizes to ∞ -categories.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Let \mathscr{C} be an ∞ -category. There is an object that lies somewhere between \mathscr{C} and its homotopy category $h_1\mathscr{C}$: the functor of all homotopy categories

 $\mathbb{D}_{\mathscr{C}}\colon K\mapsto \mathrm{h}_1(\mathscr{C}^K).$

This is called the prederivator associated to \mathscr{C} . If \mathscr{C} is pointed and admits (finite) colimits, then $\mathbb{D}_{\mathscr{C}}(K)$ is pointed and restriction along $u: K \to L$ has a left adjoint

$$u_!: \mathbb{D}_{\mathscr{C}}(K) \to \mathbb{D}_{\mathscr{C}}(L).$$

In this case, $\mathbb{D}_{\mathscr{C}}$ is a pointed right derivator. Homotopy coherence and homotopy Kan extensions are encoded in the derivator. The theory of derivators axiomatizes the properties of such functors \mathbb{D} and focuses on homotopy Kan extensions as the basic feature of a homotopy theory. (Grothendieck, Heller, Franke, ...)

The notion of a derivator generalizes to ∞ -categories. The main example is the functor of homotopy *n*-categories of a (sufficiently nice) ∞ -category \mathscr{C} :

$$\mathbb{D}^{(n)}_{\mathscr{C}}\colon K\mapsto \mathrm{h}_n(\mathscr{C}^K).$$

ヘロト ヘロト ヘヨト ヘヨト

Let \mathscr{C} be an ∞ -category. There is an object that lies somewhere between \mathscr{C} and its homotopy category $h_1\mathscr{C}$: the functor of all homotopy categories

 $\mathbb{D}_{\mathscr{C}}\colon K\mapsto \mathrm{h}_1(\mathscr{C}^K).$

This is called the prederivator associated to \mathscr{C} . If \mathscr{C} is pointed and admits (finite) colimits, then $\mathbb{D}_{\mathscr{C}}(K)$ is pointed and restriction along $u: K \to L$ has a left adjoint

$$u_!: \mathbb{D}_{\mathscr{C}}(K) \to \mathbb{D}_{\mathscr{C}}(L).$$

In this case, $\mathbb{D}_{\mathscr{C}}$ is a pointed right derivator. Homotopy coherence and homotopy Kan extensions are encoded in the derivator. The theory of derivators axiomatizes the properties of such functors \mathbb{D} and focuses on homotopy Kan extensions as the basic feature of a homotopy theory. (Grothendieck, Heller, Franke, ...)

The notion of a derivator generalizes to ∞ -categories. The main example is the functor of homotopy *n*-categories of a (sufficiently nice) ∞ -category \mathscr{C} :

$$\mathbb{D}^{(n)}_{\mathscr{C}}\colon K\mapsto \mathrm{h}_n(\mathscr{C}^K).$$

This is called the *n*-derivator associated to \mathscr{C} and retains many of the structural properties of \mathscr{C} .

メロト メタト メヨト メヨト

Let ${\mathscr C}$ be a pointed $\infty\text{-category}$ with finite colimits.

Let \mathscr{C} be a pointed ∞ -category with finite colimits. Let $S_k \mathbb{D}^{(n)}_{\mathscr{C}} \subseteq \mathbb{D}_{\mathscr{C}}(\operatorname{Ar}[k])$ be the full subcategory spanned by $X \in \mathbb{D}^{(n)}_{\mathscr{C}}(\operatorname{Ar}[k])$ such that:

- all diagonal values of X are zero objects.
- every square in X is a pushout in $\mathbb{D}^{(n)}_{\mathscr{C}}(\Box)$.

< □ > < 同 > < 回 > < 回 >

Let \mathscr{C} be a pointed ∞ -category with finite colimits. Let $S_k \mathbb{D}^{(n)}_{\mathscr{C}} \subseteq \mathbb{D}_{\mathscr{C}}(\operatorname{Ar}[k])$ be the full subcategory spanned by $X \in \mathbb{D}^{(n)}_{\mathscr{C}}(\operatorname{Ar}[k])$ such that:

- all diagonal values of X are zero objects.
- every square in X is a pushout in $\mathbb{D}^{(n)}_{\mathscr{C}}(\Box)$.

There are equivalences: $\mathsf{S}_k \mathbb{D}_{\mathscr{C}}^{(n)} \simeq \mathrm{h}_n(\mathsf{S}_k \mathscr{C}) \simeq \mathrm{h}_n(\mathscr{C}^{[k-1]}).$

< □ > < 同 > < 回 > < 回 >

Let \mathscr{C} be a pointed ∞ -category with finite colimits. Let $S_k \mathbb{D}^{(n)}_{\mathscr{C}} \subseteq \mathbb{D}_{\mathscr{C}}(\operatorname{Ar}[k])$ be the full subcategory spanned by $X \in \mathbb{D}^{(n)}_{\mathscr{C}}(\operatorname{Ar}[k])$ such that:

- all diagonal values of X are zero objects.
- every square in X is a pushout in $\mathbb{D}^{(n)}_{\mathscr{C}}(\Box)$.

There are equivalences: $\mathsf{S}_k \mathbb{D}_{\mathscr{C}}^{(n)} \simeq \mathrm{h}_n(\mathsf{S}_k \mathscr{C}) \simeq \mathrm{h}_n(\mathscr{C}^{[k-1]}).$

Let $S_k^{\sim} \mathbb{D}_{\mathscr{C}}^{(n)} \subset S_k \mathbb{D}_{\mathscr{C}}^{(n)}$ be the maximal ∞ -subgroupoid. Then $[k] \mapsto S_k^{\sim} \mathbb{D}_{\mathscr{C}}^{(n)}$ defines a simplicial space.

(日) (四) (日) (日) (日)

Let \mathscr{C} be a pointed ∞ -category with finite colimits. Let $S_k \mathbb{D}_{\mathscr{C}}^{(n)} \subseteq \mathbb{D}_{\mathscr{C}}(\operatorname{Ar}[k])$ be the full subcategory spanned by $X \in \mathbb{D}_{\mathscr{C}}^{(n)}(\operatorname{Ar}[k])$ such that:

- all diagonal values of X are zero objects.
- every square in X is a pushout in $\mathbb{D}^{(n)}_{\mathscr{C}}(\Box)$.

There are equivalences: $S_k \mathbb{D}_{\mathscr{C}}^{(n)} \simeq h_n(S_k \mathscr{C}) \simeq h_n(\mathscr{C}^{[k-1]}).$

Let $S_k^{\sim} \mathbb{D}_{\mathscr{C}}^{(n)} \subset S_k \mathbb{D}_{\mathscr{C}}^{(n)}$ be the maximal ∞ -subgroupoid. Then $[k] \mapsto S_k^{\sim} \mathbb{D}_{\mathscr{C}}^{(n)}$ defines a simplicial space.

Definition

$$K(\mathbb{D}^{(n)}_{\mathscr{C}}): = \Omega|\mathsf{S}^{\simeq}_{\bullet}\mathbb{D}^{(n)}_{\mathscr{C}}|.$$

Let \mathscr{C} be a pointed ∞ -category with finite colimits. Let $S_k \mathbb{D}^{(n)}_{\mathscr{C}} \subseteq \mathbb{D}_{\mathscr{C}}(\operatorname{Ar}[k])$ be the full subcategory spanned by $X \in \mathbb{D}^{(n)}_{\mathscr{C}}(\operatorname{Ar}[k])$ such that:

- all diagonal values of X are zero objects.
- every square in X is a pushout in $\mathbb{D}^{(n)}_{\mathscr{C}}(\Box)$.

There are equivalences: $S_k \mathbb{D}_{\mathscr{C}}^{(n)} \simeq h_n(S_k \mathscr{C}) \simeq h_n(\mathscr{C}^{[k-1]}).$

Let $S_k^{\sim} \mathbb{D}_{\mathscr{C}}^{(n)} \subset S_k \mathbb{D}_{\mathscr{C}}^{(n)}$ be the maximal ∞ -subgroupoid. Then $[k] \mapsto S_k^{\sim} \mathbb{D}_{\mathscr{C}}^{(n)}$ defines a simplicial space.

Definition

$$K(\mathbb{D}^{(n)}_{\mathscr{C}}): = \Omega|\mathsf{S}^{\simeq}_{\bullet}\mathbb{D}^{(n)}_{\mathscr{C}}|.$$

This agrees with the derivator K-theory of Maltsiniotis and Garkusha for n = 1.

イロン イ団 とく ヨン イヨン

Let \mathscr{C} be a pointed ∞ -category with finite colimits. Let $S_k \mathbb{D}^{(n)}_{\mathscr{C}} \subseteq \mathbb{D}_{\mathscr{C}}(\operatorname{Ar}[k])$ be the full subcategory spanned by $X \in \mathbb{D}^{(n)}_{\mathscr{C}}(\operatorname{Ar}[k])$ such that:

- all diagonal values of X are zero objects.
- every square in X is a pushout in $\mathbb{D}^{(n)}_{\mathscr{C}}(\Box)$.

There are equivalences: $S_k \mathbb{D}_{\mathscr{C}}^{(n)} \simeq h_n(S_k \mathscr{C}) \simeq h_n(\mathscr{C}^{[k-1]}).$

Let $S_k^{\simeq} \mathbb{D}_{\mathscr{C}}^{(n)} \subset S_k \mathbb{D}_{\mathscr{C}}^{(n)}$ be the maximal ∞ -subgroupoid. Then $[k] \mapsto S_k^{\simeq} \mathbb{D}_{\mathscr{C}}^{(n)}$ defines a simplicial space.

Definition

$$K(\mathbb{D}^{(n)}_{\mathscr{C}}): = \Omega|\mathsf{S}^{\simeq}_{\bullet}\mathbb{D}^{(n)}_{\mathscr{C}}|.$$

This agrees with the derivator K-theory of Maltsiniotis and Garkusha for n = 1.

Theorem

The canonical comparison map $K(\mathscr{C}) \to K(\mathbb{D}^{(n)}_{\mathscr{C}})$ is (n+1)-connected.

Let \mathscr{C} be a pointed ∞ -category with finite colimits. Let $S_k \mathbb{D}^{(n)}_{\mathscr{C}} \subseteq \mathbb{D}_{\mathscr{C}}(\operatorname{Ar}[k])$ be the full subcategory spanned by $X \in \mathbb{D}^{(n)}_{\mathscr{C}}(\operatorname{Ar}[k])$ such that:

- all diagonal values of X are zero objects.
- every square in X is a pushout in $\mathbb{D}^{(n)}_{\mathscr{C}}(\Box)$.

There are equivalences: $S_k \mathbb{D}_{\mathscr{C}}^{(n)} \simeq h_n(S_k \mathscr{C}) \simeq h_n(\mathscr{C}^{[k-1]}).$

Let $S_k^{\simeq} \mathbb{D}_{\mathscr{C}}^{(n)} \subset S_k \mathbb{D}_{\mathscr{C}}^{(n)}$ be the maximal ∞ -subgroupoid. Then $[k] \mapsto S_k^{\simeq} \mathbb{D}_{\mathscr{C}}^{(n)}$ defines a simplicial space.

Definition

$$K(\mathbb{D}^{(n)}_{\mathscr{C}}): = \Omega|\mathsf{S}^{\simeq}_{\bullet}\mathbb{D}^{(n)}_{\mathscr{C}}|.$$

This agrees with the derivator K-theory of Maltsiniotis and Garkusha for n = 1.

Theorem

The canonical comparison map $K(\mathscr{C}) \to K(\mathbb{D}_{\mathscr{C}}^{(n)})$ is (n+1)-connected. Moreover, derivator K-theory is the best approximation to K-theory by a functor which is invariant under equivalences of higher derivators.

Let \mathscr{C} be a pointed ∞ -category with finite colimits. Let $S_k \mathbb{D}^{(n)}_{\mathscr{C}} \subseteq \mathbb{D}_{\mathscr{C}}(\operatorname{Ar}[k])$ be the full subcategory spanned by $X \in \mathbb{D}^{(n)}_{\mathscr{C}}(\operatorname{Ar}[k])$ such that:

- all diagonal values of X are zero objects.
- every square in X is a pushout in $\mathbb{D}^{(n)}_{\mathscr{C}}(\Box)$.

There are equivalences: $\mathsf{S}_k \mathbb{D}^{(n)}_{\mathscr{C}} \simeq \mathrm{h}_n(\mathsf{S}_k \mathscr{C}) \simeq \mathrm{h}_n(\mathscr{C}^{[k-1]}).$

Let $S_k^{\simeq} \mathbb{D}_{\mathscr{C}}^{(n)} \subset S_k \mathbb{D}_{\mathscr{C}}^{(n)}$ be the maximal ∞ -subgroupoid. Then $[k] \mapsto S_k^{\simeq} \mathbb{D}_{\mathscr{C}}^{(n)}$ defines a simplicial space.

Definition

$$K(\mathbb{D}^{(n)}_{\mathscr{C}}): = \Omega|\mathsf{S}^{\simeq}_{\bullet}\mathbb{D}^{(n)}_{\mathscr{C}}|.$$

This agrees with the derivator K-theory of Maltsiniotis and Garkusha for n = 1.

Theorem

The canonical comparison map $K(\mathscr{C}) \to K(\mathbb{D}_{\mathscr{C}}^{(n)})$ is (n+1)-connected. Moreover, derivator K-theory is the best approximation to K-theory by a functor which is invariant under equivalences of higher derivators.

Remark. The map $\mathcal{K}(\mathscr{C}) \to \mathcal{K}(\mathbb{D}^{(1)}_{\mathscr{C}})$ is not a π_3 -iso in general. (Muro R.)