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An co-category € is an n-category, n > 1, if:
Q given f,f': A" — & such that f ~ f'(rel JA"), then f = f'.
(‘equivalent n-morphisms are equal’)
Q given f,f': A" — &, m > n, such that figam = f|f9A,,,, then f = f'.
(‘no m-morphisms for m > n')

Example
@ n = 1: (nerves of) ordinary categories.
@ X Kan complex/oco-groupoid. Then:
X >~ n—category <= m(X)=0V k>n (déf n-truncated).

Proposition
Let € be an oco-category. Then:

€ ~ (n — category) <= mapg(x,y) is (n — 1) — truncated Vx,y € €.
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Higher homotopy categories |
Let € be an co-category. There is a homotopy n-category h,% together with a
functor 7y,: € — h,% such that for every n-category 9:

o

(— o yn): Fun(h,®,2) = Fun(%, 2).

Construction. (Lurie) The set of m-simplices (h,%), of h,% is

{sk,A™ — & which extend to sk, ;A™}
~ relative to sk,_1A™

Example (n = 1 — usual homotopy category h(%))

The 0-simplices (objects) of h1& are the objects of €. The 1-simplices
(morphisms) are the morphisms of € up to homotopy. The 2-simplices
(composition) correspond to equivalence classes of diagrams:

ON? — = @.

1
l/
e
s 2

A?
4
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general because h;& forgets about homotopy coherence. (hy(€") % (h;%)".)
Pushouts or pullbacks in & become weak pushouts/pullbacks in h;%.

In what sense does h,% have better (co)limits?
Definition
Let & be an co-category and t € Z>q U {o0}.

@ x € € is weakly initial of order t if mapg(x,y) is (t — 1)-connected Vy € 6.

Q@ Let F: K — € a diagram in € where K is a simplicial set. A weak colimit
of F of order t is a weakly initial object in €, (=oc-category of cocones
over F) of order t.

Example

@ (t = o0): We recover the standard notions of initial object and colimit in an
oco-category.

@ (t =0): We recover the classical notions of weakly initial object and weak
colimit.

W
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Let € be an oco-category and K a simplicial set. The comparison between colimits
in € and in h,% is related to the properties of the canonical forgetful functors

OK: h,(8F) — ha(B)K.

Proposition
Let € be an co-category, n > 1.

@ Suppose that € has K-colimits where dim(K) = d. Then h,€ admits weak
K-colimits of order (n — d) and 7,: € — h, € preserves these.

@ Moreover, we have an equivalence of co-categories:

hy— g (ha(85)) ~ hya ((RB)F).

© If € has finite colimits, then h,€ has finite coproducts and weak pushouts
of order (n — 1).

@ Suppose that € has finite colimits. If v,: € — h,€ preserves finite colimits,
then ~y, is an equivalence.

4
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between stable co-categories and triangulated categories.

Let € be a stable co-category. Then the n-category h,% satisfies the following:
@ h,% has a zero object and finite (co)products.
h,% has weak pushouts and weak pullbacks of order (n — 1).
@ A square is a weak pushout of order (n — 1) iff it is a weak pullback of order
(n—1).
@ There is an equivalence ¥: h,% ~ h,% and weak pushouts of order (n —1):

X —>0
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0 — X X.

Is this a good notion of a stable n-category? The following hold:
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h; ( stable n — category) = triangulated category if n > 2.
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@ A square is a weak pushout of order (n — 1) iff it is a weak pullback of order
(n—1).
@ There is an equivalence ¥: h,% ~ h,% and weak pushouts of order (n —1):

X —>0

]

0 — X X.

Is this a good notion of a stable n-category? The following hold:
@ hy(stable n — category) = stable k — category for k < n.
h; ( stable n — category) = triangulated category if n > 2. (n-angulated?)
@ n = oco: We recover the definition of a stable co-category.
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Conjecture (Antieau): There is a good theory of stable n-categories that lies
between stable co-categories and triangulated categories.

Let € be a stable co-category. Then the n-category h,% satisfies the following:
@ h,% has a zero object and finite (co)products.
h,% has weak pushouts and weak pullbacks of order (n — 1).
@ A square is a weak pushout of order (n — 1) iff it is a weak pullback of order
(n—1).

@ There is an equivalence ¥: h,% ~ h,% and weak pushouts of order (n —1):

X —>0

]

0 — X X.

Is this a good notion of a stable n-category? The following hold:
@ hy(stable n — category) = stable k — category for k < n.
h; ( stable n — category) = triangulated category if n > 2. (n-angulated?)
@ n = oco: We recover the definition of a stable co-category.
@ n = 1: weaker than a Aed category
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Conjecture (Antieau): There is a good theory of stable n-categories that lies
between stable co-categories and triangulated categories.

Let € be a stable co-category. Then the n-category h,% satisfies the following:
@ h,% has a zero object and finite (co)products.
h,% has weak pushouts and weak pullbacks of order (n — 1).
@ A square is a weak pushout of order (n — 1) iff it is a weak pullback of order
(n—1).

@ There is an equivalence ¥: h,% ~ h,% and weak pushouts of order (n —1):

X —>0

]

0 — X X.

Is this a good notion of a stable n-category? The following hold:
@ hy(stable n — category) = stable k — category for k < n.
h; ( stable n — category) = triangulated category if n > 2. (n-angulated?)
@ n = oco: We recover the definition of a stable co-category.

@ n = 1: weaker than a Aed category because weak pushouts (of order 0) do
not suffice for the construction of triangles.

G. Raptis Higher homotopy categories and K-theory 23 June 2020 7/12



Stable n-categories?

Conjecture (Antieau): There is a good theory of stable n-categories that lies
between stable co-categories and triangulated categories.

Let € be a stable co-category. Then the n-category h,% satisfies the following:
@ h,% has a zero object and finite (co)products.
h,% has weak pushouts and weak pullbacks of order (n — 1).
@ A square is a weak pushout of order (n — 1) iff it is a weak pullback of order
(n—1).

@ There is an equivalence ¥: h,% ~ h,% and weak pushouts of order (n —1):

X —>0

]

0 — X X.

Is this a good notion of a stable n-category? The following hold:
@ hy(stable n — category) = stable k — category for k < n.
h; ( stable n — category) = triangulated category if n > 2. (n-angulated?)
@ n = oco: We recover the definition of a stable co-category.

@ n = 1: weaker than a Aed category because weak pushouts (of order 0) do
not suffice for the construction of triangles. (A singular case?)
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K-theory of oo-categories

Let & be a pointed oo-category with finite colimits. We write Ar[n] = [n] ™.
For example, for n =0, 1,2, these are the following posets:

° e —> o *« —>

|

—_—

_—

P <——— 0 <— 0
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Let & be a pointed oo-category with finite colimits. We write Ar[n] = [n] ™.
For example, for n =0, 1, 2, these are the following posets:

° e —> o *« —>

|

—_—

. e

P <——— 0 <— 0

Let S,% C Fun(Ar[n], ) be the full subcategory spanned by X: Ar[n] — & s.t.:
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Let S,% C Fun(Ar[n], ) be the full subcategory spanned by X: Ar[n] — & s.t.:
@ all diagonal values of X are zero objects.
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K-theory of oo-categories

Let & be a pointed oo-category with finite colimits. We write Ar[n] = [n] ™.
For example, for n =0, 1, 2, these are the following posets:

° e —> o *« —>

|

—_—

. e

P <——— 0 <— 0

Let S,% C Fun(Ar[n], ) be the full subcategory spanned by X: Ar[n] — & s.t.:
@ all diagonal values of X are zero objects.

@ every square in the diagram X is a pushout.
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K-theory of oo-categories

Let & be a pointed oo-category with finite colimits. We write Ar[n] = [n] ™.
For example, for n =0, 1, 2, these are the following posets:

° e —> o *« —>

|

—_—

_—

P <——— 0 <— 0

Let S,% C Fun(Ar[n], ) be the full subcategory spanned by X: Ar[n] — & s.t.:
@ all diagonal values of X are zero objects.
@ every square in the diagram X is a pushout.

There is an equivalence S,% ~ l'—1
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K-theory of oo-categories
Let € be a pointed co-category with finite colimits. We write Ar[n] = [n] ™.
For example, for n =0, 1, 2, these are the following posets:

° e —> o o= ¢ ——> o

L
|

. « —>

Let S,% C Fun(Ar[n], ) be the full subcategory spanned by X: Ar[n] — & s.t.:
@ all diagonal values of X are zero objects.
@ every square in the diagram X is a pushout.

There is an equivalence S,% ~ @l"~1. Let S5 C S,% be the associated
maximal oo-subgroupoid in S,%. Then [n] — ST'& defines a simplicial space.
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K-theory of oo-categories
Let € be a pointed co-category with finite colimits. We write Ar[n] = [n] ™.
For example, for n =0, 1, 2, these are the following posets:
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|
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Let S,% C Fun(Ar[n], ) be the full subcategory spanned by X: Ar[n] — & s.t.:
@ all diagonal values of X are zero objects.
@ every square in the diagram X is a pushout.

There is an equivalence S,% ~ @l"~1. Let S5 C S,% be the associated
maximal oo-subgroupoid in S,%. Then [n] — ST'& defines a simplicial space.

Definition
K(%): =QSz%|. J
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K-theory of oo-categories

Let € be a pointed co-category with finite colimits. We write Ar[n] = [n] ™.
For example, for n =0, 1, 2, these are the following posets:

T
|

. « —>
Let S,% C Fun(Ar[n], ) be the full subcategory spanned by X: Ar[n] — & s.t.:
@ all diagonal values of X are zero objects.
@ every square in the diagram X is a pushout.

There is an equivalence S,% ~ @l"~1. Let S5 C S,% be the associated
maximal oo-subgroupoid in S,%. Then [n] — ST'& defines a simplicial space.

Definition
K(%): =QSz%|. J

Fact. The inclusion Q|Ob S3*&| — K(@) is a homotopy equivalence.
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K-theory of higher homotopy categories |

Let € be a pointed oco-category with finite colimits and n > 1.
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K-theory of higher homotopy categories |

Let € be a pointed co-category with finite colimits and n > 1. We equip h,€
with the canonical structure can, which consists of those squares in h,¢

00— h,%

which are equivalent to a square that arises from a pushout square in 6.
(This is additional structure only for n = 1!)
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Let € be a pointed oco-category with finite colimits and n > 1. We equip h,%
with the canonical structure can, which consists of those squares in h,¢

O — h,%

which are equivalent to a square that arises from a pushout square in 6.
(This is additional structure only for n = 1!)

We may use these squares to define an analogous Se-construction for h,%.
(All we need is a structure of distinguished squares.)
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Let € be a pointed oco-category with finite colimits and n > 1. We equip h,%
with the canonical structure can, which consists of those squares in h,¢

O — h,%

which are equivalent to a square that arises from a pushout square in 6.
(This is additional structure only for n = 1!)

We may use these squares to define an analogous Se-construction for h,%.
(All we need is a structure of distinguished squares.)

Let S,(h,€,can) C Fun(Ar[n],h,&) be the full subcategory spanned by
X: Ar[n] — h,® such that:
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Let € be a pointed oco-category with finite colimits and n > 1. We equip h,%
with the canonical structure can, which consists of those squares in h,¢

O — h,%

which are equivalent to a square that arises from a pushout square in 6.
(This is additional structure only for n = 1!)

We may use these squares to define an analogous Se-construction for h,%.
(All we need is a structure of distinguished squares.)

Let S,(h,€,can) C Fun(Ar[n],h,&) be the full subcategory spanned by
X: Ar[n] — h,® such that:

@ all diagonal values of X are zero objects.

@ every square in the diagram X is in can.

Let S3(h,€,can) C S,(h,%,can) be the maximal oo-groupoid in S,(h,&, can).
Then [n] — S5 (h,%, can) is a simplicial space.
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Let € be a pointed oco-category with finite colimits and n > 1. We equip h,%
with the canonical structure can, which consists of those squares in h,¢

O — h,%

which are equivalent to a square that arises from a pushout square in 6.
(This is additional structure only for n = 1!)

We may use these squares to define an analogous Se-construction for h,%.
(All we need is a structure of distinguished squares.)
Let S,(h,€,can) C Fun(Ar[n],h,&) be the full subcategory spanned by
X: Ar[n] — h,® such that:
@ all diagonal values of X are zero objects.
@ every square in the diagram X is in can.
Let S3(h,€,can) C S,(h,%,can) be the maximal oo-groupoid in S,(h,&, can).
Then [n] — S5 (h,%, can) is a simplicial space.

Definition
K(h,&,can): = Q|S7(h,&, can)|. J
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K-theory of higher homotopy categories Il
Theorem

Let € be a pointed co-category with finite colimits. Then the canonical
comparison map K(%) — K(h,&,can) is n-connected.
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K-theory of higher homotopy categories Il
Theorem

Let € be a pointed co-category with finite colimits. Then the canonical
comparison map K(%) — K(h,&,can) is n-connected.

Remark. The connectivity estimate in the theorem is best possible in general.
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Theorem

Let € be a pointed co-category with finite colimits. Then the canonical
comparison map K(%) — K(h,&,can) is n-connected.

Remark. The connectivity estimate in the theorem is best possible in general.

Example (n = 1 and the Grothendieck group)
Suppose that € is a stable co-category.
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K-theory of higher homotopy categories Il

Theorem

Let € be a pointed co-category with finite colimits. Then the canonical
comparison map K(%) — K(h,&,can) is n-connected.

Remark. The connectivity estimate in the theorem is best possible in general.
Example (n = 1 and the Grothendieck group)
Suppose that € is a stable oo-category. The 1-connectivity of

K(®€) — K(h1%,can)

recovers the well-known fact that Ko(€) can be obtained from the triangulated
homotopy category h; 6.
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K-theory of higher homotopy categories Il

Theorem

Let € be a pointed co-category with finite colimits. Then the canonical
comparison map K(%) — K(h,&,can) is n-connected.

Remark. The connectivity estimate in the theorem is best possible in general.
Example (n = 1 and the Grothendieck group)
Suppose that € is a stable oo-category. The 1-connectivity of

K(®€) — K(h1%,can)

recovers the well-known fact that Ko(€) can be obtained from the triangulated
homotopy category h; 6.

Corollary (conjectured by Antieau, connective case)

Let € and €’ be stable co-categories such that (W, %, can) ~ (h,€’, can). Then
the (n — 1)-truncations of K-theory are equivalent: Pp,_1K (%) ~ P,_1K(%’).

V.
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Derivators and Higher Derivators: An Informal Introduction
Let € be an co-category.
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Derivators and Higher Derivators: An Informal Introduction

Let € be an oo-category. There is an object that lies somewhere between € and
its homotopy category h;%: the functor of all homotopy categories

Dg: K+ hy(€5).
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Derivators and Higher Derivators: An Informal Introduction

Let € be an oo-category. There is an object that lies somewhere between € and
its homotopy category h;%: the functor of all homotopy categories

Dg: K+ hy(€5).

This is called the prederivator associated to €.
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its homotopy category h;%: the functor of all homotopy categories
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colimits, then Dg(K) is pointed and restriction along u: K — L has a left adjoint
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Derivators and Higher Derivators: An Informal Introduction

Let € be an co-category. There is an object that lies somewhere between € and
its homotopy category h;%: the functor of all homotopy categories

Dg: K — hy(8F).

This is called the prederivator associated to €. If € is pointed and admits (finite)
colimits, then Dg(K) is pointed and restriction along u: K — L has a left adjoint

In this case, D¢ is a pointed right derivator.

G. Raptis Higher homotopy categories and K-theory

23 June 2020 11/12



Derivators and Higher Derivators: An Informal Introduction
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In this case, D¢ is a pointed right derivator. Homotopy coherence and homotopy
Kan extensions are encoded in the derivator.
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Let € be an co-category. There is an object that lies somewhere between € and
its homotopy category h;%: the functor of all homotopy categories

Dg: K — hy(8F).

This is called the prederivator associated to €. If € is pointed and admits (finite)
colimits, then Dg(K) is pointed and restriction along u: K — L has a left adjoint

In this case, D¢ is a pointed right derivator. Homotopy coherence and homotopy
Kan extensions are encoded in the derivator. The theory of derivators axiomatizes
the properties of such functors D and focuses on homotopy Kan extensions as the
basic feature of a homotopy theory. (Grothendieck, Heller, Franke, ...)
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Derivators and Higher Derivators: An Informal Introduction
Let € be an co-category. There is an object that lies somewhere between € and
its homotopy category h;%: the functor of all homotopy categories

Dg: K — hy(8F).

This is called the prederivator associated to €. If € is pointed and admits (finite)
colimits, then Dg(K) is pointed and restriction along u: K — L has a left adjoint

In this case, D¢ is a pointed right derivator. Homotopy coherence and homotopy
Kan extensions are encoded in the derivator. The theory of derivators axiomatizes
the properties of such functors ID and focuses on homotopy Kan extensions as the
basic feature of a homotopy theory. (Grothendieck, Heller, Franke, ...)

The notion of a derivator generalizes to co-categories.
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Derivators and Higher Derivators: An Informal Introduction
Let € be an co-category. There is an object that lies somewhere between € and
its homotopy category h;%: the functor of all homotopy categories

Dg: K — hy(8F).

This is called the prederivator associated to €. If € is pointed and admits (finite)
colimits, then Dg(K) is pointed and restriction along u: K — L has a left adjoint

In this case, D¢ is a pointed right derivator. Homotopy coherence and homotopy
Kan extensions are encoded in the derivator. The theory of derivators axiomatizes
the properties of such functors ID and focuses on homotopy Kan extensions as the
basic feature of a homotopy theory. (Grothendieck, Heller, Franke, ...)

The notion of a derivator generalizes to co-categories. The main example is the
functor of homotopy n-categories of a (sufficiently nice) co-category &:

DY) K ha(85).
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Derivators and Higher Derivators: An Informal Introduction

Let € be an co-category. There is an object that lies somewhere between € and
its homotopy category h;%: the functor of all homotopy categories

Dg: K — hy(8F).

This is called the prederivator associated to €. If € is pointed and admits (finite)
colimits, then Dg(K) is pointed and restriction along u: K — L has a left adjoint

In this case, D¢ is a pointed right derivator. Homotopy coherence and homotopy
Kan extensions are encoded in the derivator. The theory of derivators axiomatizes
the properties of such functors ID and focuses on homotopy Kan extensions as the
basic feature of a homotopy theory. (Grothendieck, Heller, Franke, ...)

The notion of a derivator generalizes to co-categories. The main example is the
functor of homotopy n-categories of a (sufficiently nice) co-category &:
DY) K ha(85).

This is called the n-derivator associated to € and retains many of the structural

properties of 6.
G. Raptis Higher homotopy categories and K-theory 23 June 2020 11/12
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K-theory of Higher Derivators

Let € be a pointed oco-category with finite colimits.
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K-theory of Higher Derivators
Let ¥ be a pointed co-category with finite colimits. Let $,D{” C Dg(Ar[k]) be
the full subcategory spanned by X € ]D)%’)(Ar[k]) such that:

o all diagonal values of X are zero objects.

@ every square in X is a pushout in ID)S;)(D).
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K-theory of Higher Derivators
Let € be a pointed co-category with finite colimits. Let Sk]D)%") C Dg(Ar[k]) be

the full subcategory spanned by X € ]D)%’)(Ar[k]) such that:
o all diagonal values of X are zero objects.

@ every square in X is a pushout in ID)(")(D).
There are equivalences: Sk]D) h,(Sk%) ~ h,(glk-1).

G. Raptis Higher homotopy categories and K-theory 23 June 2020 12/12



K-theory of Higher Derivators
Let € be a pointed oco-category with finite colimits. Let Sk]D)%") C Dg(Ar[k]) be

the full subcategory spanned by X € ]D)%’)(Ar[k]) such that:
o all diagonal values of X are zero objects.

@ every square in X is a pushout in ID)(")(D).
There are equivalences: Sk]D) h,(Sk%) ~ h,(glk-1).

Let S¢ Dg") C Sk]D)%' be the maximal co-subgroupoid. Then [k] — SfID)%’)
defines a simplicial space.
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K-theory of Higher Derivators
Let € be a pointed co-category with finite colimits. Let Sk]D)%") C Dg(Ar[k]) be

the full subcategory spanned by X € ]D)%’)(Ar[k]) such that:
o all diagonal values of X are zero objects.

@ every square in X is a pushout in ID)(")(D).
There are equivalences: Sk]D) h,(Sk%) ~ h,(glk-1).

Let ST Dg") C Sk]D)%' be the maximal co-subgroupoid. Then [k] — SfD%’)
defines a simplicial space.

Definition
(ny. _ ~m (1)
KDE): =QsyD)|.
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K-theory of Higher Derivators
Let € be a pointed oco-category with finite colimits. Let Sk]D)%") C Dg(Ar[k]) be

the full subcategory spanned by X € Dg)(Ar[k]) such that:
o all diagonal values of X are zero objects.

@ every square in X is a pushout in ID)(")(D).
There are equivalences: Sk]D) h,(SkE) =~ h,(Bk-1).
Let S¢ Dg") C Sk]D)%' be the maximal co-subgroupoid. Then [k] — SfID)%’)
defines a simplicial space.

Definition

KDY)): =QIs7pQ|.

This agrees with the derivator K-theory of Maltsiniotis and Garkusha for n = 1.
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K-theory of Higher Derivators
Let € be a pointed oco-category with finite colimits. Let SkD%") C Dg(Ar[k]) be

the full subcategory spanned by X € Dg)(Ar[k]) such that:
o all diagonal values of X are zero objects.

@ every square in X is a pushout in ID)(")(D).
There are equivalences: Sk]D) h,(SkE) =~ h,(Bk-1).
Let S¢ ID)%") C Sk]D)%' be the maximal co-subgroupoid. Then [k] — SfD%’)
defines a simplicial space.

Definition

KDY)): =QIs7pQ|.

This agrees with the derivator K-theory of Maltsiniotis and Garkusha for n = 1.

Theorem

The canonical comparison map K(%) — K(]Dg)) is (n + 1)-connected.
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K-theory of Higher Derivators
Let € be a pointed oco-category with finite colimits. Let SkDg) C Dg(Ar[k]) be
the full subcategory spanned by X € Dg)(Ar[k]) such that:

o all diagonal values of X are zero objects.

@ every square in X is a pushout in ID)(")(D).
There are equivalences: Sk]D) h,(SkE) =~ h,(Bk-1).
Let 5D S, DY) be the maximal co-subgroupoid. Then [k] — STDY
defines a simplicial space.

Definition

KDY)): =QIs7pQ|.

This agrees with the derivator K-theory of Maltsiniotis and Garkusha for n = 1.
Theorem

The canonical comparison map K(€) — K(D DY )) is (n+ 1)-connected. Moreover,
derivator K-theory is the best approximation to K-theory by a functor which is
invariant under equivalences of higher derivators.
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K-theory of Higher Derivators
Let € be a pointed oco-category with finite colimits. Let SkDg;) C Dg(Ar[k]) be
the full subcategory spanned by X € Dg)(Ar[k]) such that:

o all diagonal values of X are zero objects.

@ every square in X is a pushout in ID)(")(D).
There are equivalences: Sk]D) h,(SkE) =~ h,(Bk-1).
Let 5D S, DY) be the maximal co-subgroupoid. Then [k] — STDY
defines a simplicial space.

Definition
K(]D(n))' _ Q|S:D(n)|
€ /- e ¢ I*

This agrees with the derivator K-theory of Maltsiniotis and Garkusha for n = 1.
Theorem

The canonical comparison map K(€) — K(D DY )) is (n+ 1)-connected. Moreover,
derivator K-theory is the best approximation to K-theory by a functor which is
invariant under equivalences of higher derivators.

1y - o
Remark. The map K(¥) — K(]D)Sg)) is not a 3-iso in_general. (Muro-R.)
23 June 2020 12/12



	Introduction
	(n,1)-categories (following [HTT, 2.3.4])
	Higher homotopy categories I
	Higher weak colimits
	Higher homotopy categories II
	Stable n-categories?
	K-theory of -categories
	K-theory of higher homotopy categories
	Derivators and Higher Derivators: An Informal Introduction
	K-theory of Higher Derivators

