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Abstract. We discuss two categorical characterizations of the class of acyclic
maps between spaces. The first one is in terms of the higher categorical notion
of an epimorphism. The second one employs the notion of a balanced map,
that is, a map whose homotopy pullbacks along π0-surjective maps define also
homotopy pushouts. We also identify the modality in the homotopy theory of
spaces that is defined by the class of acyclic maps, and discuss the content of
the generalized Blakers-Massey theorem for this modality.

1. Introduction and Statement of Results

One of the most enigmatic elementary constructions in homotopy theory is
Quillen’s plus construction. For each based path-connected space X there is a
based acyclic map qX : X → X+ such that the kernel of π1(qX) is exactly the max-
imal perfect subgroup of π1(X). Such a construction first appeared for homology
spheres in [7] and it was later developed by Quillen [10] who used it for the purpose
of defining higher algebraic K-theory of rings. The construction easily generalizes
as follows: for each perfect normal subgroup P � π1(X), there is an acyclic map
qX,P : X → X+

P such that the kernel of π1(qX,P ) is P . The map qX,P is universal
with respect to this property and therefore also unique up to homotopy.

We recall that a map of path-connected spaces f : X → Y is acyclic if its homo-
topy fiber Ff is acyclic, i.e., H̃∗(Ff ;Z) = 0. Acyclic maps are also characterized by
the following propertes (see [4, 5]):

(H) the map f induces isomorphisms H∗(X; f∗A) ∼= H∗(Y ;A) for all local
abelian coefficient systems A on Y .

(+) the map f is identified up to weak homotopy equivalence with the plus
construction qX,P : X → X+

P with respect to the kernel P of π1(f, x) –
which is a perfect group.

More generally, we say that a map f : X → Y of (not necessarily path-connected)
spaces is acyclic if the homotopy fibers of f are acyclic spaces (equivalently, if (H)
is satisfied). An acyclic map is therefore a homology equivalence in a strong sense,
but it can be very far from inducing a π∗-isomorphism in general. For example,
the theorem of Kan and Thurston [6] shows that for any path-connected space X,
there is a discrete group G and an acyclic map BG → X. Note that acyclic maps
are closed under homotopy pullbacks (by definition) and under homotopy pushouts
(by (H)). Property (+) connects the acyclic maps with the plus construction and
therefore with algebraic K-theory. We refer to [4] for a nice treatment of the
approach to algebraic K-theory based on the plus construction.

This paper makes no special claim to originality. Its purpose is twofold, firstly,
to prove two further characterizations of the class of acyclic maps, and secondly,
to discuss the properties of the modality in the homotopy theory of spaces that is
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defined by the class of acyclic maps. The first characterization involves the notion
of an epimorphism as suggested by higher category theory. In the homotopy theory
(∞-category) of spaces, this notion corresponds to the following: a map f : X → Y
is called a (homotopy) epimorphism if the commutative square

(1) X

f

��

f // Y

id
��

Y
id // Y

is a homotopy pushout. This is the categorical dual of the notion of monomorphism
as defined in higher category theory. (See [8] for a discussion of this notion in general
∞-categories.) The first characterization states that a map is acyclic if and only if
it is an epimorphism.

The second characterization is motivated by another well-known special property
of acyclic maps. Given an acyclic map between path-connected spaces f : X → Y ,
then the homotopy fiber sequence

(2) Ff → X
f−→ Y

is also a homotopy cofiber sequence (see [5, 1]). Indeed, the induced map from
the homotopy cofiber CFf→X → Y is acyclic (by excision) and induces a π1-
isomorphism (by the van Kampen theorem). However, it is easy to see that this
property cannot characterize the acyclic maps (the trivial map X → ∗ always has
this property, too). We consider the following stronger property: a map f : X → Y
is called balanced if for every 0-connected map g : B → Y , the homotopy pullback
square

(3) E

��

// X

f

��
B

g // Y

is also a homotopy pushout. We note that 0-connected maps, that is, maps which
are surjective on π0, are the effective epimorphisms in the homotopy theory of spaces
(in the sense of [8]). The second characterization states that a map is acyclic if and
only if it is balanced. This characterization follows easily from the results of Alonso
in [1] – where general criteria for a homotopy pullback of (path-connected) spaces
to be a homotopy pushout are shown. We prove these two characterizations of
acyclic maps, as epimorphisms and as balanced maps, in Section 2.

The notion of a modality was used by Anel-Biedermann-Finster-Joyal [2] in con-
nection with generalizations of the classical Blakers-Massey theorem. The proto-
typical example of a modality is the factorization system in the ∞-topos of spaces
which is defined by the classes of n-connected and n-truncated maps. It is shown
in [2] that there is a Blakers-Massey theorem and a dual Blakers-Massey theorem
associated to each modality. These theorems specialize to the classical statements
in the case of the aforementioned modality in spaces.

In Section 3, we give a proof that the class of acyclic maps defines the left class
of a modality in spaces and identify the associated right class as the class of maps
f : X → Y such that ker

(
π1(f, x)

)
does not contain a non-trivial perfect subgroup
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for any x ∈ X. Then we apply the main results of [2] and comment on the content
of the corresponding Blakers-Massey theorems for this example of a modality.

Acknowledgements. I thank Jérôme Scherer for pointing out to me the work of
Alonso [1] after a first version of this paper appeared, and Georg Biedermann for
suggesting the connection with the notion of a modality and the results of [2]. I
also thank Mathieu Anel and Eric Finster for interesting discussions about the
properties of modalities. Finally, I would like to thank an anonymous referee for
their helpful comments. This work was partially supported by SFB 1085 - Higher
Invariants (University of Regensburg) funded by the DFG.

2. Epimorphisms, acyclic maps, and balanced maps

In this section we prove two characterizations of acyclic maps, as epimorphisms
in the homotopy theory of spaces, and as balanced maps. The characterization of
acyclic maps as balanced maps is essentially contained in the work of Alonso [1], for
path-connected spaces at least, and our proof is closely related to arguments used
in that paper (see [1, Theorem 2.5 and Corollary 2.9]). See also [1, Proposition 4.2]
for some further characterizations of acyclic maps.

Theorem 2.1. Let f : X → Y be a map of spaces.
(a) f is acyclic if and only if f is an epimorphism.
(b) f is acyclic if and only if f is balanced.

Proof. (a). Suppose that f is an epimorphism. By the Mayer-Vietoris sequence
of the homotopy pushout square (1), it follows that f satisfies condition (H), and
therefore it is acyclic.

Suppose that f is acyclic. By restricting to path-connected components if necessary,
we may assume that both X and Y are (non-empty and) path-connected. Let C
be the homotopy pushout:

X

f

��

f // Y

��
Y

c // C.
By excision, the map c induces homology isomorphisms for all local abelian co-
efficient systems on C, and therefore c is acyclic by condition (H). It is also a
π1-isomorphism, by the van Kampen theorem, since π1(f, x), x ∈ X, is surjective
(and therefore an epimorphism in the category of groups). It follows that c is a
weak homotopy equivalence.

(b). Suppose that f is acyclic. Let g : B → Y be a 0-connected map and consider
the homotopy pullback

(4) E

��

// X

f

��
B

g // Y.

We claim that this square is also a homotopy pushout. Since (4) is obtained as
the coproduct of the homotopy pullbacks over each path component of Y , and also
coproducts of homotopy pushouts are again homotopy pushouts, we may assume
that Y is (non-empty and) path-connected. (These facts are instances of homotopy
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descent in an ∞-topos.) Then X is path-connected, too. We first consider the case
where B is also path-connected. We have a diagram of homotopy pullbacks:

F

��

// E

f ′

��

// X

f

��
∗ // B

g // Y

where F is the homotopy fiber of both f and f ′. Since f and f ′ are acyclic, the
left and the composite squares are also homotopy pushouts - see the remarks after
(2) above. Therefore the right square is also a homotopy pushout. This shows the
claim in the case where B is path-connected.

Let B =
⊔

I Bi where each Bi is a path-connected component of B 6= ∅ (we may
assume that B is a CW complex). Then each homotopy pullback

Ei

��

g′i // X

f

��
Bi

gi // Y

is also a homotopy pushout since f is acyclic and Bi is path-connected. Consider
the diagram ⊔

I Ei

��

⊔
I g′i // ⊔

I X⊔
I f

��

∇ // X

f

��
B =

⊔
I Bi ⊔

I gi

// ⊔
I Y ∇

// Y.

By the definition of homotopy pullbacks, the composite square is a homotopy pull-
back. (This is an instance of homotopy descent in an ∞-topos [8].)

The left square is a homotopy pushout because it is so for each i ∈ I. Moreover,
the right square is a homotopy pushout using the fact that f is acyclic (or an
epimorphism): the map f is up to homotopy the composition of taking |I|(> 0)
iterated homotopy pushouts along copies of the map f . Therefore the composite
square is also a homotopy pushout and the claim in the general case follows.

Suppose that f is balanced. The claim is trivial if Y is empty, so we assume that
Y 6= ∅. Given a homotopy pullback

(5) E

f ′

��

g′ // X

f

��
B

g // Y

consider the square of homotopy fibers of the maps which start from each corner of
the square (5) and map to Y , taken over a point y ∈ Y ,

(6) Fgf ′,y

��

// Ff,y

��
Fg,y

// ∗
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This square is again a homotopy pullback. Therefore Fgf ′,y ' Fg,y × Ff,y.
Assuming that g is 0-connected, the first square (5) is a homotopy pushout since

f is balanced. It follows by well-known properties of the homotopy theory of spaces
that the square of homotopy fibers (6) is also a homotopy pushout. (This is an
instance of homotopy descent in an ∞-topos [8].) Thus, the homotopy pushout
Fg,y ∗ Ff,y of (6) is weakly contractible for any g : B → Y which is π0-surjective.
Setting, for example, g : B = Y × S0 → Y to be the projection, it follows that Ff,y

must have trivial reduced homology for every y ∈ Y . This completes the proof of
Theorem 2.1. �

Remark 2.2. (On the connectivity assumption.) The assumption that the map
g : B → Y is 0-connected in the definition of a balanced map is necessary. Without
this assumption, Theorem 2.1(b) fails for obvious reasons (consider, for example,
the case where B = ∅). More specifically, without this assumption on g, the
resulting notion simply defines the class of weak homotopy equivalences.

Remark 2.3. The∞-category of spaces is well-copowered since quotient objects (in
the sense of the notion of epimorphism used here) correspond to perfect normal
subgroups of the fundamental group (at different basepoints).

Example 2.4. Applying Theorem 2.1(a) to the map f : X → ∗, we recover as a
special case the following well–known characterization: X is acyclic if and only if
ΣX is weakly contractible.

Remark 2.5. An acyclic map f : X → Y does not have the property that each
homotopy pushout square

X

f

��

// C

��
Y // D

is also a homotopy pullback. For example, given an acyclic space F , the homotopy
pushout

F

��

// ∗

��
∗ // ΣF ' ∗

is not a homotopy pullback. We will return to this dual question in the next section.

Example 2.6. (Algebraic K-theory.) Let R be a unital ring and BGL(R) →
BGL(R)+ the acyclic map to the path-connected cover of the algebraic K-theory
of R. As a consequence of Theorem 2.1(b), for each map ∅ 6= B → BGL(R)+ the
homotopy pullback

E

��

// BGL(R)

��
B // BGL(R)+

is a homotopy pushout. For B = ∗, a model for the homotopy fiber E is given by
the (acyclic) Volodin space. When B = Sn, then the homotopy pullback E satisfies
E+ ' Sn.



6 GEORGE RAPTIS

Example 2.7. (Using the Kan-Thurston theorem.) LetX be a path-connected space
with universal covering space p : X̃ → X. According to the Kan-Thurston theorem
[6], there is a discrete group G and an acyclic (based) map f : BG→ X. We have
a homotopy pullback:

(7) BP

��

// BG

f

��
X̃

p
// X

where P is the kernel of π1(f) – a perfect normal subgroup of G. Then, by Theorem
2.1(b), the square (7) is also a homotopy pushout.

3. The modality of acyclic maps

3.1. Preliminaries. For the presentation of the results in this section, it will be
convenient to use the language of ∞-categories as in [2]. Let S denote the ∞-
category of spaces. Given i : A → B and p : X → Y in an ∞-category C, we say
that i and p are orthogonal if the following square

mapC(B,X) //

��

mapC(B, Y )

��
mapC(A,X) // mapC(A, Y )

is a pullback in S. In this case, we say that i is left orthogonal to p, or p is right
orthogonal to i, and denote this relation by i ⊥ p. For a class of morphisms A in
an ∞-category C, we write

A⊥ : = {p ∈ C | a ⊥ p for every a ∈ A}
⊥A : = {i ∈ C | i ⊥ a for every a ∈ A}.

Definition 3.1. Let C be an ∞-category. A factorization system in C consists of
a pair of classes of morphisms (L,R) in C such that:

(a) every morphism f in C admits a factorization f = R(f) ◦ L(f) where
L(f) ∈ L and R(f) ∈ R.

(b) L⊥ = R and L = ⊥R.
We say that L is the left class and R is the right class of the factorization system.

Definition 3.2. Let C be an∞-topos. A factorization system (L,R) in an∞-topos
C is a modality if the class L is closed under pullbacks.

We refer to [2, Section 3] for a discussion of the general properties of factorization
systems and modalities.

3.2. Acyclic maps define a modality. Our purpose in this section is to give a
proof that the class of acyclic maps in the ∞-topos S is the left class of a modality.
Let A denote the class of acyclic maps in S. We recall that f : X → Y is acyclic if its
homotopy fibers are acyclic spaces (equivalently, f induces homology isomorphisms
for all local abelian coefficient systems on Y ). Furthermore, let B denote the class
of maps f : X → Y in S such that for each x ∈ X (= x : 1 → X), the normal
subgroup

ker
(
π1(f, x)

)
� π1(X,x)
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does not contain a non-trivial perfect subgroup. Equivalently, f ∈ B if and only
if for each x ∈ X the (homotopy) fiber Ff,y of f at y = f(x) has the property
that its fundamental group π1(Ff,y, x) has trivial maximal perfect subgroup. (This
equivalence uses the fact that the epimorphism π1(Ff,y, x) � ker

(
π1(f, x)

)
defines

a central extension, and therefore it preserves the maximal perfect subgroup by [4,
1.6].)

Theorem 3.3. The pair (A,B) is a modality in S.

We will need the following lemma. We first recall that a map f : X → Y in S is
a monomorphism if it is equivalent to an inclusion of components (equivalently, if
the canonical map ∆f : X → X ×Y X is an equivalence).

Lemma 3.4. Let X be a 0-connected space, P�π1(X,x) a perfect normal subgroup,
and let qX,P : X → X+

P denote the associated plus construction. Then the restriction
map

q∗X,P : mapS(X+
P , Z)→ mapS(X,Z)

is a monomorphism in S for every Z ∈ S. Moreover,

q∗X,P : π0
(
mapS(X+

P , Z)
)
↪→ π0

(
mapS(X,Z)

)
is identified with the inclusion of the classes of maps g : X → Z for which ker

(
π1(g, x)

)
contains the subgroup P .

Proof. Since X → X+
P is an epimorphism in S, by Theorem 2.1(a), it follows that

the induced square in S

mapS(X+
P , Z) //

��

mapS(X+
P , Z)

��
mapS(X+

P , Z) // mapS(X,Z)

is a pullback. Therefore the first claim follows. The second claim is a well-known
consequence of the universal property of the plus construction (see, for example,
[4, Chapter 5]). �

Proof of Theorem 3.3. First we show that the required factorizations exist. Let
f : X → Y be a map of spaces. By restricting to components if necessary, we may
assume that X is 0-connected, and we fix a basepoint x ∈ X. Let P denote the
maximal perfect subgroup of ker

(
π1(f, x)

)
. Using the universal property of the plus

construction with respect to P , as a perfect normal subgroup of π1(X,x), we have
a factorization in S as follows,

X

i   

f // Y

X+
P

p

>>

where i ∈ A. Moreover, p ∈ B because there is an isomorphism

ker
(
π1(p, i(x))

) ∼= ker
(
π1(f, x)

)
/P

and this group has no non-trivial perfect subgroups.
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Next we show that B ⊆ A⊥ (or A ⊆ ⊥B). Consider a square in S

A //

i

��

X

p

��
B // Y

where i ∈ A and p ∈ B. By restricting to components if necessary, we may assume
that i is a map between 0-connected spaces. In this case, B ' A+

P for some perfect
normal subgroup P � π1(A, a), for some chosen basepoint a ∈ A. We obtain the
following diagram in S

mapS(B,X)
c //

''

E
j //

��

mapS(A,X)

��
mapS(B, Y )

i∗
// mapS(A, Y )

where E denotes the pullback. By Lemma 3.4, the maps i∗ and jc are monomor-
phisms. Hence j, and as a consequence c, are also monomorphisms. Therefore it
suffices to show that c induces a bijection on π0. By Lemma 3.4, we know that the
subset

π0(E) ↪→ π0
(
mapS(A,X)

)
consists of those classes g : A → X such that P is contained in ker

(
π1(pg, a)

)
.

Since p ∈ B, the image of the subgroup P in π1(X, g(a)) must be trivial, hence P
is actually contained in ker

(
π1(g, a)

)
. This identifies it with the subset

π0
(
mapS(B,X)

)
↪→ π0

(
mapS(A,X)

)
,

as was required to show.
Now we prove that A⊥ ⊆ B. Suppose that p : X → Y is in A⊥. Consider the

factorization constructed above, X i−→ X̃
q−→ Y , where i ∈ A and q ∈ B. Then the

square
X

i
��

X

p

��
X̃

q
//

??

Y

shows that i admits a retraction, and therefore i is an equivalence – alternatively,
note that p is a retract of q. Lastly, we show that ⊥B ⊆ A. Suppose that i : A→ B is
a map in ⊥B. We consider again the factorization constructed above, A j−→ B̃

p−→ B,
where j ∈ A and p ∈ B, and the lifting problem

A
j //

i

��

B̃

p

��
B

l

??

B.

The lift l shows that i is a retract of the map j, hence it is also an acyclic map – it
also follows that l must be an equivalence. This completes the proof that (A,B) is
a factorization system. The factorization system (A,B) defines a modality because
acyclic maps are closed under pullbacks by definition. �
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Remark 3.5. The modality of Theorem 3.3 can be regarded as an instance of the
construction in [2, Example 3.5.3] for the nullification that defines the plus con-
struction (see [11, 3]). We emphasize that the modality of Theorem 3.3 is different
from the factorization system that arises from the plus construction as a localiza-
tion in the ∞-category of spaces and whose left class is the class of maps which
become equivalences after plus construction.

3.3. Blakers-Massey theorems for acyclic maps. As an application of the
main results of [2], we obtain a Blakers-Massey theorem and a dual Blakers-Massey
theorem associated with the modality (A,B) in S.

Given a map f : X → Y and y ∈ Y , we write Ff,y for the (homotopy) fiber of
f at y. The Generalized Blakers-Massey theorem [2, Theorem 4.1.1] specialized to
the modality (A,B) gives the following statement (see also the comments in [2, p.
30]): Given a pushout square in S

A
g //

f

��

C

��
B // D

such that for every a ∈ A, the map

(8) Ff,f(a) ∨a Fg,g(a) → Ff,f(a) × Fg,g(a)

is acyclic, then the canonical map A→ B ×D C is acyclic.
This statement can be reduced to a simpler statement as follows. First note that

the fiber of the map (8) at the point (a′, a′′) is given by the join

Ωa,a′Ff,f(a) ∗ Ωa,a′′Fg,g(a).

(Here Ωx,x′X, for x, x′ ∈ X, denotes the pullback of (∗ x−→ X
x′←− ∗).) We recall the

following fact about the join construction.

Lemma 3.6. Let X and Y be non-empty spaces in S. Then X ∗ Y is contractible
if and only if it is acyclic.

Proof. Suppose that X ∗Y is acyclic. Since H̃0(X;Z)⊗H̃0(Y ;Z) ∼= H1(X ∗Y ;Z) =
0, it follows that either X or Y is 0-connected. Then, by the van Kampen theorem
applied iteratively, X ∗Y is also 1-connected (see also [9, Lemma 2.2]). Hence X ∗Y
is contractible. �

This leads to the following simplification of the assumption about the acyclicity
of the map (8).

Proposition 3.7. The map (8) is acyclic if and only if it is an equivalence.

Proof. Suppose that (8) is acyclic. Using the description of the fibers of (8) in
terms of the join construction, it follows that at most one of the fibers, Ff,f(a) and
Fg,g(a), can fail to be 0-connected. If one of them is not 0-connected, say Ff,f(a),
then by choosing (a′, a′′) appropriately, it follows that the other fiber Fg,g(a) must
be contractible – and so the fibers of (8) are contractible as well. If both fibers are
0-connected, then the previous lemma applies. �
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Thus, the Blakers-Massey theorem for acyclic maps as stated above, reduces to
the Little Blakers-Massey theorem [2, Corollary 4.1.4] specialized to S: this asserts
that if (8) is an equivalence for each a ∈ A, then the pushout square is also a
pullback.

Remark 3.8. The join X ∗ Y of two (non-empty) spaces is acyclic if and only if
there is a set of primes P such that one of the homologies, H̃∗(X;Z) and H̃∗(Y ;Z),
is P -torsion and the other is uniquely P -divisible. See [1, proof of Theorem 2.5].

Example 3.9. Let (X,x) and (Y, y) be based 0-connected spaces such that the join
ΩxX∗ΩyY is acyclic/contractible. Then an application of the Little Blakers-Massey
theorem to the pushout square in S

X × Y //

��

X

��
Y // X ∗ Y

shows that the square is also a pullback. (Further comments: the Blakers-Massey
theorem for acyclic maps yields that the canonical map X × Y → X ×X∗Y Y is
acyclic. But either ΩxX or ΩyY must be 0-connected. As a consequence, the
canonical map to this pullback is π1-injective and therefore it is an equivalence.)

Example 3.10. Let (X,x) and (Y, y) be based spaces such that π1(X,x) and π1(Y, y)
are trivial, and the join Ω2

xX ∗Ω2
yY is acyclic/contractible. Then an application of

the Little Blakers-Massey theorem to the pushout square

∗ //

��

X

��
Y // X ∨ Y

shows that it is also a pullback.

On the other hand, the dual Generalized Blakers-Massey theorem [2, Theorem
3.6.1] for the modality (A,B) specializes to the following statement: Given a pull-
back square in S

(9) A //

��

C

f

��
B

g
// D

such that that for every d, d′ ∈ D, the join Ff,d ∗ Fg,d′ is acyclic, then it follows
that the canonical map B ∪A C → D is acyclic.
For the proof, note that the fiber of this canonical map at d ∈ D is exactly the join
Ff,d ∗ Fg,d – this observation was also used in the proof of Theorem 2.1(b). Note
that the assumption on the join is satisfied when f or g is acyclic.

In the case of 0-connected spaces, this statement is also part of [1, Theorem
2.5] in which case it is shown that the canonical map B ∪A C → D is actually an
equivalence. The same conclusion holds more generally when the maps f and g in
(9) are in addition π0-surjective, so that their fibers are non-empty and Lemma 3.6
applies – in this case, the statement above becomes an instance of the dual Little



SOME CHARACTERIZATIONS OF ACYCLIC MAPS 11

Blakers-Massey theorem. Moreover, this observation also gives a different proof of
the fact that acyclic maps are balanced. On the other hand, the pullback square

∅ //

��

C

f

��
∅ // D

where f is acyclic shows that the conclusion about acyclicity cannot be improved
in general.
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