Seminar: Morse Theory

Fakultät für Mathematik Universität Regensburg

Summer Semester 2022

(Friday 10 - 12, M102)

Ulrich Bunke Georgios Raptis

Seminar Description

The goal of this seminar is to present the basic constructions of Morse theory and some of its fundamental applications. Interesting outcomes are (the Morse-) inequalities relating the number of critical points of a function on a manifold with the Betti numbers of the manifold, a proof of the fact that a smooth manifold has the homotopy type of a CW-complex, applications to the homotopy type of path- and loop spaces of smooth manifolds, and a way to calculate the homology of a manifold using gradient flows.

Prerequisites for this seminar are the basic theory of smooth manifolds, some elements of Riemannian geometry (see, for example, [Mil63, Part II]), and some basic notions from algebraic topology.

The seminar will mainly follow the books by Milnor [Mil63] and Audin–Damian [AD14]. For some material of the seminar, the books of Hatcher [Hat02] and Nicolaescu [Nic07] will also be used.

Schedule of Talks

Part I. Morse functions on a manifold

Talk 1: Morse functions (29.04.2022)

Introduce the notion of a non-degenerate critical point of a real-valued function on a smooth manifold and the notion of a Morse function [Mil63, pp. 4–5], [AD14, Section 1.1]. Show that Morse functions always exist and that every function can be approximated by a Morse function arbitrary well following [Mil63, Section 6; esp. Theorem 6.6, Corollary 6.8] and [AD14, Section 1.2]. Sard's theorem about the measure of critical values as well as Whitney's embedding theorem should be stated precisely (but used without proof).

Talk 2: CW-complexes (06.05.2022)

Introduce the notion of a CW-complex. In particular, explain carefully the meaning of "attaching a cell". Construct the cellular chain complex of a CW-complex and show that it calculates the (singular) homology. Provide some examples of CW-complexes and compute their homologies, e.g., \mathbb{CP}^n or S^n . The material can be found, for example, in [Hat02, pp. 137–147, 519-524].

Talk 3: The Morse lemma (13.05.2022)

Prove the Morse lemma [Mil63, Lemma 2.2], [AD14, Section 1.3] which describes the form of a smooth function near a non-degenerate critical point. Show that a compactly supported vector field generates a flow of diffeomorphisms [Mil63, Lemma 2.4] and draw the flow near a non-degenerate critical point that arises from the gradient of a Morse function . Provide pictures where the Morse function is interpreted as a height function. Follow [Mil63, Sections 1–2] and [AD14, Sections 1.3–1.4].

Talk 4: Topology of the sublevel sets (20.05.2022)

Prove [Mil63, Theorem 3.1] showing that the region between two level sets without intermediate critical points is a cylinder. Then prove [Mil63, Theorem 3.2] which provides the structure of the region between two level sets when there is precisely one intermediate critical point and this is non-degenerate. Show [Mil63, Theorem 3.5] which identifies the

region above a level set with only non-degenerate critical points as a relative CW-complex relative to the level set. See also [AD14, Section 2.1].

Talk 5: Some applications (27.05.2022)

Prove Reeb's Theorem [Mil63, Theorem 4.1] which states that a compact manifold with a Morse function with precisely two critical points is homeomorphic to the sphere. Then show the Morse inequalities [Mil63, Theorem 5.2] (see also [Nic07, Section 2.3]). Finally, deduce that smooth manifolds have the homotopy type of a CW-complex (following [Mil63, Theorem 3.5] and [Mil63, pp. 36–37]).

Part II. Morse theory for the path space of a manifold

Talk 6: Smooth paths and the energy functional (03.06.2022)

Introduce the space of piecewise smooth paths in a manifold and explain how analytical concepts are understood for this space [Mil63, Section 11]. Define the energy functional and calculate its first variation [Mil63, Theorem 12.2]. Recall the relation between energy and length and deduce that geodesics are precisely the critical points of the energy functional [Mil63, Corollary 12.3]. Follow [Mil63, Sections 11–12].

Talk 7: The second variation of the energy functional (10.06.2022)

Calculate the second variation of the energy functional [Mil63, Theorem 13.1]. Recall the notion of a Jacobi field and its relation with the zero space of the Hessian of the energy functional [Mil63, Theorem 14.1]. Show that Jacobi fields are precisely the tangent vectors to variations of geodesics [Mil63, Lemma 14.3 and 14.4]. Follow [Mil63, Sections 13–14].

Talk 8: The Morse index theorem (17.06.2022)

Recall the notion of conjugate points on a geodesic. Prove the Morse index theorem [Mil63, Theorem 15.1] and discuss some its consequences. Follow [Mil63, Section 15].

Talk 9: Bounded energy path spaces (24.06.2022)

Explain the proofs of [Mil63, Theorems 16.2 and 16.3] which conclude that the energy sublevel sets of the path space between two points in a complete Riemannian manifold have the homotopy type of a finite CW-complex.

Talk 10: Topology of the full path space (01.07.2022)

Show that the full path space of a complete Riemannian manifold has the homotopy type of a countable CW-complex [Mil63, Theorem 17.3] whose cells correspond to geodesics. As an application, discuss the homotopy type of the loop space of S^n [Mil63, Corollary 17.4–17.5].

Part III. Morse homology

Talk 11: The Smale condition (08.07.2022)

Introduce the stable and the unstable manifold of a critical point of a gradient-like vector field associated to a Morse function [AD14, Section 2.2.a]. Explain the Smale condition and prove Smale's Theorem [AD14, Theorem 2.2.5] which states that every gradient-like vector field can be C^1 -approximated by one satisfying the Smale condition. Follow [AD14, Section 2.2].

Talk 12: The Morse complex (15.07.2022)

Introduce the Morse complex associated to a Morse function [AD14, Section 3.1]. In particular, explain carefully how the differential is defined and why its square vanishes. Present some examples of a Morse complex. Follow [AD14, Sections 3.1–3.2].

Talk 13: Invariance of Morse homology (22.07.2022)

Prove [AD14, Theorem 3.4.2] stating the the homology of the Morse complex does not depend on the choice of the Morse function and the gradient-like vector field. Follow [AD14, Sec. 3.4].

Talk 14: (to be determined) (29.07.2022)

Possible topics include: an overview of the proof of the Bott periodicity theorem (for the unitary group) [Mil63, Section 23], applications of Morse homology [AD14, Chapter 4], an introduction to degenerate critical points (see, e.g., [Lu80]), and many more.

References

- [AD14] Michèle Audin and Mihai Damian. Morse Theory and Floer Homology. Springer London, 2014.
- [Hat02] A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.
- [Lu80] Yung Chen Lu. Singularity theory and an introduction to catastrophe theory. Universitext. Springer-Verlag, New York-Berlin, 1980. With a preface by Peter Hilton, Corrected reprint.
- [Mil63] John Milnor. Morse Theory. (AM-51). Princeton University Press, dec 1963.
- [Nic07] L. Nicolaescu. An Invitation to Morse Theory. Springer New York, 2007.