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Introduction

Introduction

Question (Gromov)

Let M be an oriented closed aspherical manifold. Does the following implication
hold?

‖M‖ = 0 =⇒ χ(M) = 0.
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Simplicial Volume

Simplicial volume: Basic definitions

X topological space, σ =
∑

aiσi ∈ Cn(X ;R) (reduced) singular n-chain

‖σ‖1 =
∑
|ai | ∈ R≥0 (`1-norm).

M oriented closed connected (= occ) n-manifold

‖M‖ = inf{‖σ‖1 | σ fundamental R-cycle of M}
= ‖[M]‖1 ≥ 0 (`1-seminorm on homology).

(M, ∂M) oriented compact n-manifold

‖M, ∂M‖ = ‖[M, ∂M]‖1 ≥ 0.
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Simplicial Volume

Simplicial volume: Some main results

(Functoriality) M,N occ n-manifolds, f : M → N with d = deg(f ) ∈ Z,
then:

‖M‖ ≥ |d | · ‖N‖.
Consequences:

M ' N =⇒ ‖M‖ = ‖N‖.
∃ f : M → M with |deg(f )| ≥ 2 =⇒ ‖M‖ = 0. (e.g. ‖Sn‖ = 0)

(Minimal volume) M occ smooth n-manifold, then:

‖M‖ ≤ Cn ·MinVol(M)

where MinVol(M) := inf{Vol(M, g) | |sec(g)| ≤ 1}.
(Negative curvature) (M, g) occ Riemannian n-manifold with sectional
curvature ≤ δ < 0, then:

‖M‖ ≥ Cn,δ · Vol(M, g) > 0.

M hyperbolic n-manifold, then:

‖M‖ =
Vol(M)

vn
> 0. (Gromov-Thurston)

(e.g. ‖Σg‖ = 4g − 4.)
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Simplicial Volume

Simplicial volume via bounded cohomology

An n-cochain φ ∈ C n(X ;R) is bounded if {φ(σ) | σ : ∆n → X} ⊆ R is
bounded. (Equivalently: the R-linear map φ : Cn(X ;R)→ R is bounded
in the operator norm.)

C•b (X ;R) ⊆ C•(X ;R) subcomplex of the singular cochain complex defined
by the bounded cochains

Hn
b (X ;R) := Hn(C•b (X ;R)) (bounded cohomology of the space X )

Comparison map: cnX : Hn
b (X ;R)→ Hn(X ;R), n ≥ 0.

Theorem (Duality principle)

M oriented closed connected n-manifold. Then:

1 ‖M‖ = ‖ Hn
b (M;R)

cnM−→ Hn(M;R)
∩[M]∼= R ‖.

2 ‖M‖ > 0 ⇐⇒ cnM is surjective/non-trivial.

(Löh-Moraschini-R.) If ‖M‖ = 0, then “at least half” of the cohomology
classes of M are unbounded (= not in the image of the comparison map).
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Bounded cohomology theory

Bounded cohomology (I): The Mapping Theorem

The bounded cohomology of X depends only on π1(X ) (for coefficients in R!):

Theorem (Gromov’s Mapping Theorem)

Let f : X → Y be a π1-surjective map of path-connected spaces such that the

kernel of π1(f ) is amenable. Then: H•b (f ;R) : H•b (Y ;R)
∼=−→ H•b (X ;R). So also:

H•b (X ;R) ∼= H•b (Bπ1(X );R) and H•b (BG ;R) ∼= H•b (∗;R) if G is amenable.

The conclusion of the theorem is stronger: H•b (f ;V ) is an isomorphism for all
dual normed R[π1(X )]-modules V . (Ivanov, . . .)
We call such maps f amenable.

Then the converse also holds (a relative version of Johnson’s characterization of
amenability):

Theorem (Moraschini-R.; converse to the Mapping Theorem)

Let f : X → Y be a π1-surjective map of path-connected spaces with homotopy
fiber F . Then: f : X → Y is amenable iff π1(F ) is amenable.
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Bounded cohomology theory

Bounded cohomology (II): The Vanishing Theorem

We have seen: M occ n-manifold (n > 0) with π1M amenable, then it follows
Hk

b (M;R) ∼= 0 for k > 0 and so ‖M‖ = 0. But there is a stronger vanishing result:

Theorem (Gromov’s Vanishing Theorem)

Suppose that M admits an open cover U = {Ui}i∈I with the properties:

(1) for all i ∈ I and x ∈ Ui , the image of π1(Ui , x)→ π1(M, x) is amenable;

(2) for all σ ⊆ I with |σ| ≥ n + 1, the intersection Uσ =
⋂

i∈σ Ui is empty;

then: ‖M‖ = 0.

A new proof approach :
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Suppose that M admits an open cover U = {Ui}i∈I with the properties:

(1) for all i ∈ I and x ∈ Ui , the image of π1(Ui , x)→ π1(M, x) is amenable;

(2) for all σ ⊆ I with |σ| ≥ n + 1, the intersection Uσ =
⋂

i∈σ Ui is empty;

then: ‖M‖ = 0.

A new proof approach : Bounded cohomology is not excisive – few non-trivial
bounded cohomology groups are known! Actually: the natural comparison map
at the level of cochain complexes:

cM : C•b (M;R)→ C•(M;R)

is the coassembly map for bounded cohomology.

Then the goal is to construct
a factorization of cM through a cochain complex concentrated in degrees < n.
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Bounded cohomology (II): The Vanishing Theorem

We have seen: M occ n-manifold (n > 0) with π1M amenable, then it follows
Hk

b (M;R) ∼= 0 for k > 0 and so ‖M‖ = 0. But there is a stronger vanishing result:

Theorem (Gromov’s Vanishing Theorem)

Suppose that M admits an open cover U = {Ui}i∈I with the properties:

(1) for all i ∈ I and x ∈ Ui , the image of π1(Ui , x)→ π1(M, x) is amenable;

(2) for all σ ⊆ I with |σ| ≥ n + 1, the intersection Uσ =
⋂

i∈σ Ui is empty;

then: ‖M‖ = 0.

A new proof approach : By (1), the Moore–Postnikov truncation of Uσ ⊆ X
(truncating π1):

Uσ → Vσ → X

has the property that H•b (Vσ;R) is concentrated in degree 0. Note that Uσ may
not be path-connected.
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We have seen: M occ n-manifold (n > 0) with π1M amenable, then it follows
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Theorem (Gromov’s Vanishing Theorem)
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(1) for all i ∈ I and x ∈ Ui , the image of π1(Ui , x)→ π1(M, x) is amenable;

(2) for all σ ⊆ I with |σ| ≥ n + 1, the intersection Uσ =
⋂

i∈σ Ui is empty;

then: ‖M‖ = 0.

A new proof approach : We obtain a diagram of cochain complexes:

C•b (X ;R)

��

cX // C•(X ;R)

��
C•b (Vσ;R)

cVσ // C•(Vσ;R) // C•(Uσ;R)
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We have seen: M occ n-manifold (n > 0) with π1M amenable, then it follows
Hk
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Suppose that M admits an open cover U = {Ui}i∈I with the properties:

(1) for all i ∈ I and x ∈ Ui , the image of π1(Ui , x)→ π1(M, x) is amenable;

(2) for all σ ⊆ I with |σ| ≥ n + 1, the intersection Uσ =
⋂

i∈σ Ui is empty;

then: ‖M‖ = 0.

A new proof approach : Taking homotopy limits and using excision:

C•b (X ;R)

��

cX // C•(X ;R)

'
��

holimσC
•
b (Vσ;R) // holimσC

•(Vσ;R) // holimσC
•(Uσ;R)

By (2), the homotopy limits are indexed by a poset of dimension < n. Hence, the
bottom left cochain complex is concentrated in degrees < n.
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Bounded cohomology theory

Bounded cohomology (II): The Vanishing Theorem

We have seen: M occ n-manifold (n > 0) with π1M amenable, then it follows
Hk

b (M;R) ∼= 0 for k > 0 and so ‖M‖ = 0. But there is a stronger vanishing result:

Theorem (Gromov’s Vanishing Theorem)

Suppose that M admits an open cover U = {Ui}i∈I with the properties:

(1) for all i ∈ I and x ∈ Ui , the image of π1(Ui , x)→ π1(M, x) is amenable;

(2) for all σ ⊆ I with |σ| ≥ n + 1, the intersection Uσ =
⋂

i∈σ Ui is empty;

then: ‖M‖ = 0.

A new proof approach (R. ’21): yields factorizations of the comparison map
cX of cochain complexes for general homotopy colimit decompositions of X ,

hocolimIXi ' X ,

equipped with factorizations (Xi → Yi → X ) through spaces Yi with vanishing
conditions on their bounded cohomology groups.
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Simplicial volume and the Euler characteristic

Simplicial volume and the Euler characteristic

Recall (Gromov’s question): M occ aspherical n-manifold. Does the implication:

‖M‖ = 0⇒ χ(M) = 0 hold? (GromovQ)

(Integral simplicial volume) M occ n-manifold

‖M‖Z = inf{‖σ‖1 | σ fundamental Z-cycle of M} ≥ 1

≥ ‖M‖

Then (by Poincaré duality): |χ(M)| ≤ (n + 1) · ‖M‖Z.

(Generalized Milnor-Wood inequalities) M occ smooth n-manifold and
(π : TM → M) admits a flat structure. Then:

|χ(M)| ≤ ‖M‖
2n

and the Euler class e(M) is bounded.

(Ivanov-Turaev, Bucher-Monod, . . .)
Remark: If M admits a flat metric, then: ‖M‖ = 0 = χ(M).
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Simplicial volume and the Euler characteristic

Simplicial volume and the Euler characteristic (ctd.)

Recall (Gromov’s question): M oriented closed aspherical n-manifold. Does the
implication:

‖M‖ = 0⇒ χ(M) = 0 (GromovQ)

hold?

(Boundedness of the Euler class) M occ smooth n-manifold. When is the
Euler class e(M) bounded?

Proposition (Löh-Moraschini-R.)

(GromovQ) is equivalent to:

e(M) is bounded.

(Amenability) M occ n-manifold n ≥ 1 with π1(M) amenable. Then:

− (Gromov) ‖M‖ = 0.

− (Sauer) If M is also aspherical, then χ(M) = 0.
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Simplicial volume and the Euler characteristic

Comparison of invariance properties

(GromovQ) fails for non-aspherical manifolds, e.g. ‖S2n‖ = 0 6= χ(S2n).
However:

If f : M → N is an H∗(−;R)−equivalence, then we have:

χ(M) = χ(N) and (‖M‖ = 0 =⇒ ‖N‖ = 0).

Hence: if (GromovQ) holds for aspherical manifolds, then it must hold also
for certain occ manifolds which are H∗-equivalent to aspherical manifolds!

Theorem (Löh-Moraschini-R.)

Let n ∈ N≥2 be even.

1 There exist aspherical spaces X with an H∗(−;Z)-equivalence X → M to an
occ n-manifold M such that ‖X‖ = 0 and χ(X ) 6= 0.

2 There exist occ n-manifolds M with an H∗(−;Z)-equivalence X → M from
an aspherical space X such that ‖M‖ = 0 and χ(M) 6= 0.
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Theorem (Löh-Moraschini-R.)

Let n ∈ N≥2 be even.

1 There exist aspherical spaces X with an H∗(−;Z)-equivalence X → M to an
occ n-manifold M such that ‖X‖ = 0 and χ(X ) 6= 0.

2 There exist occ n-manifolds M with an H∗(−;Z)-equivalence X → M from
an aspherical space X such that ‖M‖ = 0 and χ(M) 6= 0.

G. Raptis Simplicial volume and Euler characteristic 14 October 2022 10 / 15



Simplicial volume and the cobordism category

Additivity of the simplicial volume

There is additivity in a restricted sense: For oriented compact n-manifolds
(M, ∂M) and (N, ∂N) with ∂M = ∂N such that:

π1∂M ∼= π1∂N is amenable and ∂M ⊂ M, ∂N ⊂ N are π1-injective

we have:

‖M ∪∂ N‖ = ‖M, ∂M‖+ ‖N, ∂N‖.

Example: ‖M#N‖ = ‖M‖+ ‖N‖ if n ≥ 3. (This fails for n = 2!) On the
other hand, χ(M#N) = χ(M) + χ(N)− χ(Sn).
But the connected sum of aspherical manifolds isn’t aspherical for n ≥ 3...

(Gromov’s question for compact manifolds) (M, ∂M) oriented compact
n-manifold such that M and ∂M are aspherical and ∂M ⊂ M is π1-injective.
Does the following implication hold?

‖M, ∂M‖ = 0 =⇒ χ(M, ∂M) = 0. (GromovQ∂)

Proposition. (Löh-Moraschini-R.) (GromovQ) =⇒ (GromovQ∂).
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Proposition. (Löh-Moraschini-R.) (GromovQ) =⇒ (GromovQ∂).

G. Raptis Simplicial volume and Euler characteristic 14 October 2022 11 / 15



Simplicial volume and the cobordism category

Additivity of the simplicial volume

What about the simplicial volume?

There is additivity in a restricted sense:
For oriented compact n-manifolds (M, ∂M) and (N, ∂N) with ∂M = ∂N
such that:

π1∂M ∼= π1∂N is amenable and ∂M ⊂ M, ∂N ⊂ N are π1-injective

we have:

‖M ∪∂ N‖ = ‖M, ∂M‖+ ‖N, ∂N‖.

Example: ‖M#N‖ = ‖M‖+ ‖N‖ if n ≥ 3. (This fails for n = 2!) On the
other hand, χ(M#N) = χ(M) + χ(N)− χ(Sn).
But the connected sum of aspherical manifolds isn’t aspherical for n ≥ 3...

(Gromov’s question for compact manifolds) (M, ∂M) oriented compact
n-manifold such that M and ∂M are aspherical and ∂M ⊂ M is π1-injective.
Does the following implication hold?

‖M, ∂M‖ = 0 =⇒ χ(M, ∂M) = 0. (GromovQ∂)
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Proposition. (Löh-Moraschini-R.) (GromovQ) =⇒ (GromovQ∂).

G. Raptis Simplicial volume and Euler characteristic 14 October 2022 11 / 15



Simplicial volume and the cobordism category

Additivity of the simplicial volume

There is additivity in a restricted sense: For oriented compact n-manifolds
(M, ∂M) and (N, ∂N) with ∂M = ∂N such that:

π1∂M ∼= π1∂N is amenable and ∂M ⊂ M, ∂N ⊂ N are π1-injective

we have:

‖M ∪∂ N‖ = ‖M, ∂M‖+ ‖N, ∂N‖.

Example: ‖M#N‖ = ‖M‖+ ‖N‖ if n ≥ 3. (This fails for n = 2!) On the
other hand, χ(M#N) = χ(M) + χ(N)− χ(Sn).
But the connected sum of aspherical manifolds isn’t aspherical for n ≥ 3...

(Gromov’s question for compact manifolds) (M, ∂M) oriented compact
n-manifold such that M and ∂M are aspherical and ∂M ⊂ M is π1-injective.
Does the following implication hold?

‖M, ∂M‖ = 0 =⇒ χ(M, ∂M) = 0. (GromovQ∂)
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Simplicial volume and the cobordism category

Simplicial volume and (invertible) TQFTs

Cobd oriented d-dimensional cobordism (homotopy) category:
Objects: M oriented closed (d − 1)-manifold (one from each diffeomorphism
class)
Morphisms: (W ;M,N) oriented compact d-dimensional cobordism (up to
diffeomorphism)

The additivity property of the Euler characteristic yields a (symmetric
monoidal) functor:

χ : Cobd → Z, (W ;M,N) 7→ χ(W ,M).

CobAm
d ⊆ Cobd d-dimensional amenable cobordism subcategory:
Objects: M oriented closed (d − 1)-manifold with π1M amenable (one from
each diffeomorphism class)
Morphisms: (W ;M,N) oriented compact d-dimensional cobordism with

M ↪→W ←↩ N
π1-injective (up to diffeomorphism)

The additivity property of the simplicial volume yields a (symmetric
monoidal) functor:

‖ − ‖ : CobAm
d → R, (W ;M,N) 7→ ‖W , ∂W ‖.
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Simplicial volume and the cobordism category

Simplicial volume and (invertible) TQFTs (ctd.)

Recall: for any category C and object x ∈ C, we have maps:

C(x , x)→ ΩxBC→ π1(BC, x)

and for any functor F : C→ R, there is an induced homomorphism:

π1(BC, x)→ π1(ΩBR, ∗) ∼= R.

Corollary (Löh-Moraschini-R.)

π1(BCobAm
4 , [∅]) is not finitely generated.

Proof. The image of π1(BCobAm
4 , [∅]) in R contains the simplicial volumes of

all occ 4-manifolds. The simplicial volumes of occ 4-manifolds contain an infinite
set of values which are linearly independent over Q (Heuer-Löh).

Proposition (Löh-Moraschini-R.)

There is no functor F : Cobd → R which agrees with the simplicial volume on
closed d-manifolds (viewed as endomorphisms of ∅).
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Simplicial volume and the cobordism category

Simplicial volume and (invertible) TQFTs (ctd.)

Proposition (Löh-Moraschini-R.)

There is no functor F : Cobd → R which agrees with the simplicial volume on
closed d-manifolds (viewed as endomorphisms of ∅).

Proof.

The existence of such F : Cobd → R would imply that the simplicial volume of
occ d-manifolds ‖ − ‖ : Cobd(∅,∅)→ R factors through a homomorphism

π1(BCobd , [∅])→ R.

From the identification of the homotopy type of the (topologized) cobordism
category [GMTW], there is a short exact sequence:

0→ (cyclic group)
[1] 7→[Sd ]−−−−−→ π1(BCobd , [∅])→ ΩSO

d → 0

where the middle term is the Reinhart vector field bordism group. As ‖Sd‖ = 0,
the homomorphism would factor through the oriented bordism group ΩSO

d . But
the simplicial volume isn’t bordism invariant.
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P.S. Simplcial volume and products of manifolds

P.S. Simplicial volume of products

M occ n-manifold, (N, ∂N) oriented compact m-manifold, then:

‖M‖ · ‖N, ∂N‖ ≤ ‖M × N,M × ∂N‖ ≤
(
n + m

n

)
‖M‖ · ‖N, ∂N‖.

Question: Given oriented compact n-manifolds (M, ∂M) and (N, ∂N) with
non-empty connected boundary (...perhaps with vanishing relative simplicial
volume?). Does it follow that

‖M × N, ∂‖ = 0?

This could lead to counterexamples to (GromovQ)...

Remark: this property holds for products of ≥ 3 factors (Gromov). (But
∂(M1 ×M2 ×M3) is not aspherical, even if Mi and ∂Mi are aspherical and
∂Mi ⊂ Mi are π1-injective...)
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Question: Given oriented compact n-manifolds (M, ∂M) and (N, ∂N) with
non-empty connected boundary (...perhaps with vanishing relative simplicial
volume?). Does it follow that

‖M × N, ∂‖ = 0?

This could lead to counterexamples to (GromovQ)...

Remark: this property holds for products of ≥ 3 factors (Gromov). (But
∂(M1 ×M2 ×M3) is not aspherical, even if Mi and ∂Mi are aspherical and
∂Mi ⊂ Mi are π1-injective...)
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