# Simplicial volumes, bounded cohomology, and Euler characteristics of (aspherical) manifolds

Workshop "Cobordisms, Strings, and Thom Spectra" BIRS-CMO, Oaxaca, 9–14 October, 2022

> George Raptis University of Regensburg

> > 14 October 2022

G. Raptis

Simplicial volume and Euler characteristic

14 October 2022 1 / 15

#### Introduction

996

イロト イロト イヨト イヨト

#### Introduction

#### Question (Gromov)

Let M be an oriented closed aspherical manifold. Does the following implication hold?

$$\|M\| = 0 \Longrightarrow \chi(M) = 0.$$

990

• X topological space,  $\sigma = \sum a_i \sigma_i \in C_n(X; \mathbb{R})$  (reduced) singular *n*-chain

$$\|\sigma\|_1 = \sum |a_i| \in \mathbb{R}_{\geq 0}$$
 ( $\ell^1$ -norm).

DQC

< ロ ト < 回 ト < 三 ト < 三 ト</p>

• X topological space,  $\sigma = \sum a_i \sigma_i \in C_n(X; \mathbb{R})$  (reduced) singular *n*-chain

$$\|\sigma\|_1 = \sum |a_i| \in \mathbb{R}_{\geq 0}$$
 ( $\ell^1$ -norm).

• *M* oriented closed connected (= occ) *n*-manifold

 $||M|| = \inf\{||\sigma||_1 \mid \sigma \text{ fundamental } \mathbb{R}\text{-cycle of } \mathsf{M}\}$  $= \|[M]\|_1 > 0$  ( $\ell^1$ -seminorm on homology).

nan

<ロト < 回ト < 巨ト < 巨ト -

• X topological space,  $\sigma = \sum a_i \sigma_i \in C_n(X; \mathbb{R})$  (reduced) singular *n*-chain

$$\|\sigma\|_1 = \sum |a_i| \in \mathbb{R}_{\geq 0}$$
 ( $\ell^1$ -norm).

• *M* oriented closed connected (= occ) *n*-manifold

$$\begin{split} \|M\| &= \inf\{\|\sigma\|_1 \mid \sigma \text{ fundamental } \mathbb{R}\text{-cycle of } \mathsf{M}\}\\ &= \|[M]\|_1 \geq 0 \quad (\ell^1\text{-seminorm on homology}). \end{split}$$

•  $(M, \partial M)$  oriented compact *n*-manifold

$$\|M, \partial M\| = \|[M, \partial M]\|_1 \ge 0.$$

Sac

< ロ ト < 回 ト < 三 ト < 三 ト</p>

990

• (Functoriality) M, N occ *n*-manifolds,  $f: M \to N$  with  $d = \deg(f) \in \mathbb{Z}$ , then:

 $\|M\| \geq |d| \cdot \|N\|.$ 

Sac

・ロト ・ 四ト ・ モト ・ モト

• (Functoriality) M, N occ *n*-manifolds,  $f: M \to N$  with  $d = \deg(f) \in \mathbb{Z}$ , then:

$$\|M\| \ge |d| \cdot \|N\|.$$

Consequences:

•  $M \simeq N \Longrightarrow ||M|| = ||N||.$ 

Sac

<ロト <回ト < 三ト < 三ト

• (Functoriality) M, N occ *n*-manifolds,  $f: M \to N$  with  $d = \deg(f) \in \mathbb{Z}$ , then:

$$\|M\|\geq |d|\cdot\|N\|.$$

Consequences:

• 
$$M \simeq N \Longrightarrow ||M|| = ||N||.$$

•  $\exists f: M \to M \text{ with } |\deg(f)| \ge 2 \Longrightarrow ||M|| = 0. (e.g. ||S^n|| = 0)$ 

Sar

<ロト <回ト < 三ト < 三ト

• (Functoriality) M, N occ *n*-manifolds,  $f: M \to N$  with  $d = \deg(f) \in \mathbb{Z}$ , then:

$$\|M\| \ge |d| \cdot \|N\|.$$

Consequences:

• 
$$M \simeq N \Longrightarrow ||M|| = ||N||.$$

- $\exists f: M \to M \text{ with } |\deg(f)| \ge 2 \Longrightarrow ||M|| = 0. (e.g. ||S^n|| = 0)$
- (Minimal volume) M occ smooth n-manifold, then:

 $\|M\| \leq C_n \cdot \operatorname{MinVol}(M)$ 

where  $\operatorname{MinVol}(M) := \inf \{ \operatorname{Vol}(M, g) \mid |\operatorname{sec}(g)| \leq 1 \}.$ 

• (Functoriality) M, N occ *n*-manifolds,  $f: M \to N$  with  $d = \deg(f) \in \mathbb{Z}$ , then:

$$\|M\|\geq |d|\cdot\|N\|.$$

Consequences:

• 
$$M \simeq N \Longrightarrow ||M|| = ||N||.$$

- $\exists f: M \to M \text{ with } |\deg(f)| \ge 2 \Longrightarrow ||M|| = 0. (e.g. ||S^n|| = 0)$
- (Minimal volume) *M* occ smooth *n*-manifold, then:

 $\|M\| \leq C_n \cdot \operatorname{MinVol}(M)$ 

where  $\operatorname{MinVol}(M) := \inf \{ \operatorname{Vol}(M,g) \mid |\operatorname{sec}(g)| \leq 1 \}.$ 

 (Negative curvature) (M, g) occ Riemannian n-manifold with sectional curvature ≤ δ < 0, then:</li>

$$\|M\| \geq C_{n,\delta} \cdot Vol(M,g) > 0.$$

• (Functoriality) M, N occ *n*-manifolds,  $f: M \to N$  with  $d = \deg(f) \in \mathbb{Z}$ , then:

$$\|M\|\geq |d|\cdot\|N\|.$$

Consequences:

• 
$$M \simeq N \Longrightarrow ||M|| = ||N||.$$

- $\exists f: M \to M \text{ with } |\deg(f)| \ge 2 \Longrightarrow ||M|| = 0. (e.g. ||S^n|| = 0)$
- (Minimal volume) M occ smooth n-manifold, then:

 $\|M\| \leq C_n \cdot \operatorname{MinVol}(M)$ 

where  $\operatorname{MinVol}(M) := \inf \{ \operatorname{Vol}(M,g) \mid |\operatorname{sec}(g)| \leq 1 \}.$ 

 (Negative curvature) (M, g) occ Riemannian n-manifold with sectional curvature ≤ δ < 0, then:</li>

$$\|M\| \geq C_{n,\delta} \cdot Vol(M,g) > 0.$$

M hyperbolic n-manifold, then:

$$\|M\| = \frac{Vol(M)}{v_n} > 0.$$
 (Gromov-Thurston)

(e.g.  $\|\Sigma_g\| = 4g - 4.$ )

・ロト ・ 同ト ・ ヨト ・ ヨト

990

< ロ ト < 回 ト < 三 ト < 三 ト</p>

• An *n*-cochain  $\phi \in C^n(X; \mathbb{R})$  is **bounded** if  $\{\phi(\sigma) \mid \sigma \colon \Delta^n \to X\} \subseteq \mathbb{R}$  is bounded.

SOC

< ロ ト < 回 ト < 三 ト < 三 ト</p>

An *n*-cochain φ ∈ C<sup>n</sup>(X; ℝ) is **bounded** if {φ(σ) | σ: Δ<sup>n</sup> → X} ⊆ ℝ is bounded. (Equivalently: the ℝ-linear map φ: C<sub>n</sub>(X; ℝ) → ℝ is bounded in the operator norm.)

SOC

イロト イロト イヨト イヨト

An *n*-cochain φ ∈ C<sup>n</sup>(X; ℝ) is **bounded** if {φ(σ) | σ: Δ<sup>n</sup> → X} ⊆ ℝ is bounded. (Equivalently: the ℝ-linear map φ: C<sub>n</sub>(X; ℝ) → ℝ is bounded in the operator norm.)

 $C_b^{\bullet}(X;\mathbb{R})\subseteq C^{\bullet}(X;\mathbb{R})$  subcomplex of the singular cochain complex defined by the bounded cochains

イロト イポト イヨト イヨト

An *n*-cochain φ ∈ C<sup>n</sup>(X; ℝ) is **bounded** if {φ(σ) | σ: Δ<sup>n</sup> → X} ⊆ ℝ is bounded. (Equivalently: the ℝ-linear map φ: C<sub>n</sub>(X; ℝ) → ℝ is bounded in the operator norm.)

 $C_b^{\bullet}(X;\mathbb{R})\subseteq C^{\bullet}(X;\mathbb{R})$  subcomplex of the singular cochain complex defined by the bounded cochains

 $H^n_b(X;\mathbb{R}) := H^n(C^{\bullet}_b(X;\mathbb{R}))$  (bounded cohomology of the space X)

An *n*-cochain φ ∈ C<sup>n</sup>(X; ℝ) is **bounded** if {φ(σ) | σ: Δ<sup>n</sup> → X} ⊆ ℝ is bounded. (Equivalently: the ℝ-linear map φ: C<sub>n</sub>(X; ℝ) → ℝ is bounded in the operator norm.)

 $C^{ullet}_b(X;\mathbb{R})\subseteq C^{ullet}(X;\mathbb{R})$  subcomplex of the singular cochain complex defined by the bounded cochains

 $H^n_b(X;\mathbb{R}) := H^n(C^{\bullet}_b(X;\mathbb{R})) \text{ (bounded cohomology of the space } X)$ • Comparison map:  $c^n_X : H^n_b(X;\mathbb{R}) \to H^n(X;\mathbb{R}), n \ge 0.$ 

Theorem (Duality principle) *M* oriented closed connected *n*-manifold. Then:  $\|M\| = \| H_b^n(M; \mathbb{R}) \xrightarrow{c_M^n} H^n(M; \mathbb{R}) \xrightarrow{\cap [M]} \mathbb{R} \|.$   $\|M\| > 0 \iff c_M^n \text{ is surjective/non-trivial.}$ 

An *n*-cochain φ ∈ C<sup>n</sup>(X; ℝ) is **bounded** if {φ(σ) | σ: Δ<sup>n</sup> → X} ⊆ ℝ is bounded. (Equivalently: the ℝ-linear map φ: C<sub>n</sub>(X; ℝ) → ℝ is bounded in the operator norm.)

 $C^{ullet}_b(X;\mathbb{R})\subseteq C^{ullet}(X;\mathbb{R})$  subcomplex of the singular cochain complex defined by the bounded cochains

 $H_b^n(X;\mathbb{R}) := H^n(C_b^{\bullet}(X;\mathbb{R}))$  (bounded cohomology of the space X) • Comparison map:  $c_X^n : H_b^n(X;\mathbb{R}) \to H^n(X;\mathbb{R}), n \ge 0.$ 

Theorem (Duality principle)

M oriented closed connected n-manifold. Then:

• (Löh-Moraschini-R.) If ||M|| = 0, then "at least half" of the cohomology classes of M are unbounded (= not in the image of the comparison map).

990

< ロ ト < 回 ト < 三 ト < 三 ト</p>

The bounded cohomology of X depends only on  $\pi_1(X)$  (for coefficients in  $\mathbb{R}!$ ):

nac

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The bounded cohomology of X depends only on  $\pi_1(X)$  (for coefficients in  $\mathbb{R}!$ ):

Theorem (Gromov's Mapping Theorem)

Let  $f: X \to Y$  be a  $\pi_1$ -surjective map of path-connected spaces such that the kernel of  $\pi_1(f)$  is amenable. Then:  $H_b^{\bullet}(f; \mathbb{R}): H_b^{\bullet}(Y; \mathbb{R}) \xrightarrow{\cong} H_b^{\bullet}(X; \mathbb{R})$ . So also:  $H_b^{\bullet}(X; \mathbb{R}) \cong H_b^{\bullet}(B\pi_1(X); \mathbb{R})$  and  $H_b^{\bullet}(BG; \mathbb{R}) \cong H_b^{\bullet}(*; \mathbb{R})$  if G is amenable.

200

<ロト < 回ト < 回ト < 回ト -

The bounded cohomology of X depends only on  $\pi_1(X)$  (for coefficients in  $\mathbb{R}!$ ):

Theorem (Gromov's Mapping Theorem)

Let  $f: X \to Y$  be a  $\pi_1$ -surjective map of path-connected spaces such that the kernel of  $\pi_1(f)$  is amenable. Then:  $H_b^{\bullet}(f; \mathbb{R}) \colon H_b^{\bullet}(Y; \mathbb{R}) \xrightarrow{\cong} H_b^{\bullet}(X; \mathbb{R})$ . So also:  $H_b^{\bullet}(X; \mathbb{R}) \cong H_b^{\bullet}(B\pi_1(X); \mathbb{R})$  and  $H_b^{\bullet}(BG; \mathbb{R}) \cong H_b^{\bullet}(*; \mathbb{R})$  if G is amenable.

We have H<sup>●</sup><sub>b</sub>(BG; ℝ) ≅ H<sup>●</sup><sub>b</sub>(G; ℝ) – as in usual group cohomology but using bounded cochains.

200

The bounded cohomology of X depends only on  $\pi_1(X)$  (for coefficients in  $\mathbb{R}!$ ):

Theorem (Gromov's Mapping Theorem)

Let  $f: X \to Y$  be a  $\pi_1$ -surjective map of path-connected spaces such that the kernel of  $\pi_1(f)$  is amenable. Then:  $H_b^{\bullet}(f; \mathbb{R}) \colon H_b^{\bullet}(Y; \mathbb{R}) \xrightarrow{\cong} H_b^{\bullet}(X; \mathbb{R})$ . So also:  $H_b^{\bullet}(X; \mathbb{R}) \cong H_b^{\bullet}(B\pi_1(X); \mathbb{R})$  and  $H_b^{\bullet}(BG; \mathbb{R}) \cong H_b^{\bullet}(*; \mathbb{R})$  if G is amenable.

- We have H<sup>●</sup><sub>b</sub>(BG; ℝ) ≅ H<sup>●</sup><sub>b</sub>(G; ℝ) as in usual group cohomology but using bounded cochains.
- These are the right derived functors of *G*-invariants in a category of Banach ℝ[*G*]-modules (Ivanov, Bühler,...). This is the functional analytic origin of bounded cohomology.

イロト イロト イヨト イヨト

The bounded cohomology of X depends only on  $\pi_1(X)$  (for coefficients in  $\mathbb{R}!$ ):

Theorem (Gromov's Mapping Theorem)

Let  $f: X \to Y$  be a  $\pi_1$ -surjective map of path-connected spaces such that the kernel of  $\pi_1(f)$  is amenable. Then:  $H_b^{\bullet}(f; \mathbb{R}) \colon H_b^{\bullet}(Y; \mathbb{R}) \xrightarrow{\cong} H_b^{\bullet}(X; \mathbb{R})$ . So also:  $H_b^{\bullet}(X; \mathbb{R}) \cong H_b^{\bullet}(B\pi_1(X); \mathbb{R})$  and  $H_b^{\bullet}(BG; \mathbb{R}) \cong H_b^{\bullet}(*; \mathbb{R})$  if G is amenable.

The conclusion of the theorem is stronger:  $H_b^{\bullet}(f; V)$  is an isomorphism for all dual normed  $\mathbb{R}[\pi_1(X)]$ -modules V. (Ivanov, ...)

The bounded cohomology of X depends only on  $\pi_1(X)$  (for coefficients in  $\mathbb{R}!$ ):

Theorem (Gromov's Mapping Theorem)

Let  $f: X \to Y$  be a  $\pi_1$ -surjective map of path-connected spaces such that the kernel of  $\pi_1(f)$  is amenable. Then:  $H_b^{\bullet}(f; \mathbb{R}) \colon H_b^{\bullet}(Y; \mathbb{R}) \xrightarrow{\cong} H_b^{\bullet}(X; \mathbb{R})$ . So also:  $H_b^{\bullet}(X; \mathbb{R}) \cong H_b^{\bullet}(B\pi_1(X); \mathbb{R})$  and  $H_b^{\bullet}(BG; \mathbb{R}) \cong H_b^{\bullet}(*; \mathbb{R})$  if G is amenable.

The conclusion of the theorem is stronger:  $H_b^{\bullet}(f; V)$  is an isomorphism for all dual normed  $\mathbb{R}[\pi_1(X)]$ -modules V. (Ivanov, ...) We call such maps f **amenable**.

200

The bounded cohomology of X depends only on  $\pi_1(X)$  (for coefficients in  $\mathbb{R}!$ ):

Theorem (Gromov's Mapping Theorem)

Let  $f: X \to Y$  be a  $\pi_1$ -surjective map of path-connected spaces such that the kernel of  $\pi_1(f)$  is amenable. Then:  $H_b^{\bullet}(f; \mathbb{R}) \colon H_b^{\bullet}(Y; \mathbb{R}) \xrightarrow{\cong} H_b^{\bullet}(X; \mathbb{R})$ . So also:  $H_b^{\bullet}(X; \mathbb{R}) \cong H_b^{\bullet}(B\pi_1(X); \mathbb{R})$  and  $H_b^{\bullet}(BG; \mathbb{R}) \cong H_b^{\bullet}(*; \mathbb{R})$  if G is amenable.

The conclusion of the theorem is stronger:  $H_b^{\bullet}(f; V)$  is an isomorphism for all dual normed  $\mathbb{R}[\pi_1(X)]$ -modules V. (Ivanov, ...) We call such maps f **amenable**.

Then the converse also holds (a relative version of Johnson's characterization of amenability):

Theorem (Moraschini-R.; converse to the Mapping Theorem)

Let  $f: X \to Y$  be a  $\pi_1$ -surjective map of path-connected spaces with homotopy fiber F. Then:  $f: X \to Y$  is amenable iff  $\pi_1(F)$  is amenable.

nan

イロト イロト イヨト イヨト

990

We have seen: M occ *n*-manifold (n > 0) with  $\pi_1 M$  amenable, then it follows  $H_b^k(M; \mathbb{R}) \cong 0$  for k > 0 and so ||M|| = 0.

We have seen: M occ *n*-manifold (n > 0) with  $\pi_1 M$  amenable, then it follows  $H_b^k(M; \mathbb{R}) \cong 0$  for k > 0 and so ||M|| = 0. But there is a stronger vanishing result:

Theorem (Gromov's Vanishing Theorem) Suppose that M admits an open cover  $\mathcal{U} = \{U_i\}_{i \in I}$  with the properties: (1) for all  $i \in I$  and  $x \in U_i$ , the image of  $\pi_1(U_i, x) \to \pi_1(M, x)$  is amenable; (2) for all  $\sigma \subseteq I$  with  $|\sigma| \ge n + 1$ , the intersection  $U_{\sigma} = \bigcap_{i \in \sigma} U_i$  is empty; then: ||M|| = 0.

We have seen: M occ *n*-manifold (n > 0) with  $\pi_1 M$  amenable, then it follows  $H_b^k(M; \mathbb{R}) \cong 0$  for k > 0 and so ||M|| = 0. But there is a stronger vanishing result:

Theorem (Gromov's Vanishing Theorem) Suppose that M admits an open cover  $\mathcal{U} = \{U_i\}_{i \in I}$  with the properties: (1) for all  $i \in I$  and  $x \in U_i$ , the image of  $\pi_1(U_i, x) \to \pi_1(M, x)$  is amenable; (2) for all  $\sigma \subseteq I$  with  $|\sigma| \ge n + 1$ , the intersection  $U_{\sigma} = \bigcap_{i \in \sigma} U_i$  is empty; then: ||M|| = 0.

A new proof approach :

イロト イボト イヨト イヨト

We have seen: M occ *n*-manifold (n > 0) with  $\pi_1 M$  amenable, then it follows  $H_b^k(M; \mathbb{R}) \cong 0$  for k > 0 and so ||M|| = 0. But there is a stronger vanishing result:

Theorem (Gromov's Vanishing Theorem)

Suppose that M admits an open cover  $\mathcal{U} = \{U_i\}_{i \in I}$  with the properties: (1) for all  $i \in I$  and  $x \in U_i$ , the image of  $\pi_1(U_i, x) \to \pi_1(M, x)$  is amenable; (2) for all  $\sigma \subseteq I$  with  $|\sigma| \ge n + 1$ , the intersection  $U_{\sigma} = \bigcap_{i \in \sigma} U_i$  is empty; then: ||M|| = 0.

**A new proof approach** : Bounded cohomology is not excisive – few non-trivial bounded cohomology groups are known! Actually: the natural comparison map at the level of **cochain complexes**:

$$c_M \colon C_b^{\bullet}(M;\mathbb{R}) \to C^{\bullet}(M;\mathbb{R})$$

is the *coassembly map* for bounded cohomology.

We have seen: M occ *n*-manifold (n > 0) with  $\pi_1 M$  amenable, then it follows  $H_b^k(M; \mathbb{R}) \cong 0$  for k > 0 and so ||M|| = 0. But there is a stronger vanishing result:

Theorem (Gromov's Vanishing Theorem)

Suppose that M admits an open cover  $\mathcal{U} = \{U_i\}_{i \in I}$  with the properties: (1) for all  $i \in I$  and  $x \in U_i$ , the image of  $\pi_1(U_i, x) \to \pi_1(M, x)$  is amenable; (2) for all  $\sigma \subseteq I$  with  $|\sigma| \ge n + 1$ , the intersection  $U_{\sigma} = \bigcap_{i \in \sigma} U_i$  is empty; then: ||M|| = 0.

**A new proof approach** : Bounded cohomology is not excisive – few non-trivial bounded cohomology groups are known! Actually: the natural comparison map at the level of **cochain complexes**:

$$c_M \colon C_b^{\bullet}(M;\mathbb{R}) \to C^{\bullet}(M;\mathbb{R})$$

is the *coassembly map* for bounded cohomology. Then the goal is to construct a factorization of  $c_M$  through a cochain complex concentrated in degrees < n.

Sar

イロト イロト イヨト イヨト

We have seen: M occ *n*-manifold (n > 0) with  $\pi_1 M$  amenable, then it follows  $H_b^k(M; \mathbb{R}) \cong 0$  for k > 0 and so ||M|| = 0. But there is a stronger vanishing result:

Theorem (Gromov's Vanishing Theorem)

Suppose that M admits an open cover  $\mathcal{U} = \{U_i\}_{i \in I}$  with the properties: (1) for all  $i \in I$  and  $x \in U_i$ , the image of  $\pi_1(U_i, x) \to \pi_1(M, x)$  is amenable; (2) for all  $\sigma \subseteq I$  with  $|\sigma| \ge n + 1$ , the intersection  $U_{\sigma} = \bigcap_{i \in \sigma} U_i$  is empty; then: ||M|| = 0.

**A new proof approach** : By (1), the Moore–Postnikov truncation of  $U_{\sigma} \subseteq X$  (truncating  $\pi_1$ ):

$$U_{\sigma} \to V_{\sigma} \to X$$

has the property that  $H_b^{\bullet}(V_{\sigma}; \mathbb{R})$  is concentrated in degree 0. Note that  $U_{\sigma}$  may not be path-connected.

イロト 不同ト イヨト イヨト
# Bounded cohomology (II): The Vanishing Theorem

We have seen: M occ *n*-manifold (n > 0) with  $\pi_1 M$  amenable, then it follows  $H_b^k(M; \mathbb{R}) \cong 0$  for k > 0 and so ||M|| = 0. But there is a stronger vanishing result:

Theorem (Gromov's Vanishing Theorem)

Suppose that M admits an open cover  $\mathcal{U} = \{U_i\}_{i \in I}$  with the properties: (1) for all  $i \in I$  and  $x \in U_i$ , the image of  $\pi_1(U_i, x) \to \pi_1(M, x)$  is amenable; (2) for all  $\sigma \subseteq I$  with  $|\sigma| \ge n + 1$ , the intersection  $U_{\sigma} = \bigcap_{i \in \sigma} U_i$  is empty; then: ||M|| = 0.

A new proof approach : We obtain a diagram of cochain complexes:

イロト イヨト イヨト

# Bounded cohomology (II): The Vanishing Theorem

We have seen: M occ *n*-manifold (n > 0) with  $\pi_1 M$  amenable, then it follows  $H_b^k(M; \mathbb{R}) \cong 0$  for k > 0 and so ||M|| = 0. But there is a stronger vanishing result:

Theorem (Gromov's Vanishing Theorem)

Suppose that M admits an open cover  $U = \{U_i\}_{i \in I}$  with the properties:

(1) for all  $i \in I$  and  $x \in U_i$ , the image of  $\pi_1(U_i, x) \to \pi_1(M, x)$  is amenable; (2) for all  $\sigma \subseteq I$  with  $|\sigma| \ge n + 1$ , the intersection  $U_{\sigma} = \bigcap_{i \in \sigma} U_i$  is empty; then: ||M|| = 0.

A new proof approach : Taking homotopy limits and using excision:



By (2), the homotopy limits are indexed by a poset of dimension < n. Hence, the bottom left cochain complex is concentrated in degrees  $n < n_{\text{m}}$ ,  $\square_{\text{m}}$ ,  $\square_{\text{m}$ 

### Bounded cohomology (II): The Vanishing Theorem

We have seen: M occ *n*-manifold (n > 0) with  $\pi_1 M$  amenable, then it follows  $H_b^k(M; \mathbb{R}) \cong 0$  for k > 0 and so ||M|| = 0. But there is a stronger vanishing result:

Theorem (Gromov's Vanishing Theorem)

Suppose that M admits an open cover  $\mathcal{U} = \{U_i\}_{i \in I}$  with the properties: (1) for all  $i \in I$  and  $x \in U_i$ , the image of  $\pi_1(U_i, x) \to \pi_1(M, x)$  is amenable; (2) for all  $\sigma \subseteq I$  with  $|\sigma| \ge n + 1$ , the intersection  $U_{\sigma} = \bigcap_{i \in \sigma} U_i$  is empty; then: ||M|| = 0.

**A new proof approach** (R. '21): yields factorizations of the comparison map  $c_X$  of cochain complexes for general homotopy colimit decompositions of X,

 $\operatorname{hocolim}_I X_i \simeq X,$ 

equipped with factorizations  $(X_i \rightarrow Y_i \rightarrow X)$  through spaces  $Y_i$  with vanishing conditions on their bounded cohomology groups.

イロト イポト イヨト イヨト

990

< □ > < □ > < □ > < Ξ > < Ξ >

Recall (Gromov's question): *M* occ aspherical *n*-manifold. Does the implication:

$$||M|| = 0 \Rightarrow \chi(M) = 0$$
 hold? (GromovQ)

SAC

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Recall (Gromov's question): M occ aspherical n-manifold. Does the implication:

$$||M|| = 0 \Rightarrow \chi(M) = 0$$
 hold? (GromovQ)

• (Integral simplicial volume) M occ n-manifold

$$\|M\|_{\mathbb{Z}} = \inf\{\|\sigma\|_1 \mid \sigma \text{ fundamental } \mathbb{Z}\text{-cycle of } \mathsf{M}\} \ge 1$$
  
  $\ge \|M\|$ 

Then (by Poincaré duality):  $|\chi(M)| \leq (n+1) \cdot ||M||_{\mathbb{Z}}$ .

イロト イロト イヨト イヨト

Recall (Gromov's question): *M* occ aspherical *n*-manifold. Does the implication:

$$||M|| = 0 \Rightarrow \chi(M) = 0$$
 hold? (GromovQ)

• (Integral simplicial volume) M occ n-manifold

$$\|M\|_{\mathbb{Z}} = \inf\{\|\sigma\|_1 \mid \sigma \text{ fundamental } \mathbb{Z}\text{-cycle of } \mathsf{M}\} \ge 1$$
  
  $\geq \|M\|$ 

Then (by Poincaré duality):  $|\chi(M)| \leq (n+1) \cdot ||M||_{\mathbb{Z}}$ .

• (Generalized Milnor-Wood inequalities) M occ smooth *n*-manifold and  $(\pi: TM \to M)$  admits a flat structure. Then:

$$|\chi(M)| \leq \frac{\|M\|}{2^n}$$
 and the Euler class  $e(M)$  is bounded.

(Ivanov-Turaev, Bucher-Monod, ...)

イロト イボト イヨト イヨト

Recall (Gromov's question): *M* occ aspherical *n*-manifold. Does the implication:

$$||M|| = 0 \Rightarrow \chi(M) = 0$$
 hold? (GromovQ)

• (Integral simplicial volume) M occ n-manifold

$$\|M\|_{\mathbb{Z}} = \inf\{\|\sigma\|_1 \mid \sigma \text{ fundamental } \mathbb{Z}\text{-cycle of } \mathsf{M}\} \ge 1$$
  
  $\geq \|M\|$ 

Then (by Poincaré duality):  $|\chi(M)| \leq (n+1) \cdot ||M||_{\mathbb{Z}}$ .

• (Generalized Milnor-Wood inequalities) M occ smooth *n*-manifold and  $(\pi: TM \to M)$  admits a flat structure. Then:

$$|\chi(M)| \leq \frac{\|M\|}{2^n}$$
 and the Euler class  $e(M)$  is bounded.

(Ivanov-Turaev, Bucher-Monod, ...) **Remark**: If *M* admits a flat metric, then:  $||M|| = 0 = \chi(M)$ .

990

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Recall (Gromov's question): M oriented closed aspherical *n*-manifold. Does the implication:

$$\|M\| = 0 \Rightarrow \chi(M) = 0 \qquad (GromovQ)$$

hold?

• (Boundedness of the Euler class) *M* occ smooth *n*-manifold. When is the Euler class *e*(*M*) bounded?

イロト イロト イヨト イヨト

Recall (Gromov's question): M oriented closed aspherical *n*-manifold. Does the implication:

$$|M|| = 0 \Rightarrow \chi(M) = 0$$
 (GromovQ)

hold?

• (Boundedness of the Euler class) *M* occ smooth *n*-manifold. When is the Euler class *e*(*M*) bounded?

Proposition (Löh-Moraschini-R.)

(GromovQ) is equivalent to:

e(M) is bounded.

イロト イロト イヨト イヨト

Recall (Gromov's question): M oriented closed aspherical *n*-manifold. Does the implication:

$$|M| = 0 \Rightarrow \chi(M) = 0$$
 (GromovQ)

hold?

• (Boundedness of the Euler class) *M* occ smooth *n*-manifold. When is the Euler class *e*(*M*) bounded?

Proposition (Löh-Moraschini-R.)

(GromovQ) is equivalent to:

e(M) is bounded.

• (Amenability) M occ n-manifold  $n \ge 1$  with  $\pi_1(M)$  amenable. Then:

$$- (\mathsf{Gromov}) \|M\| = 0.$$

- (Sauer) If M is also aspherical, then  $\chi(M) = 0$ .

990

イロト イロト イヨト イヨト

• (GromovQ) fails for non-aspherical manifolds, e.g.  $||S^{2n}|| = 0 \neq \chi(S^{2n})$ .

Sac

<ロト < 回ト < 巨ト < 巨ト

- (GromovQ) fails for non-aspherical manifolds, e.g.  $||S^{2n}|| = 0 \neq \chi(S^{2n})$ . However:
- If  $f: M \to N$  is an  $H_*(-; \mathbb{R})$ -equivalence, then we have:

$$\chi(M) = \chi(N)$$
 and  $(||M|| = 0 \Longrightarrow ||N|| = 0)$ .

Sac

イロト 不得 トイヨト イヨト 二日

- (GromovQ) fails for non-aspherical manifolds, e.g.  $||S^{2n}|| = 0 \neq \chi(S^{2n})$ . However:
- If  $f: M \to N$  is an  $H_*(-; \mathbb{R})$ -equivalence, then we have:

$$\chi(M) = \chi(N)$$
 and  $(||M|| = 0 \Longrightarrow ||N|| = 0)$ .

Hence: if (GromovQ) holds for aspherical manifolds, then it must hold also for certain occ manifolds which are  $H_*$ -equivalent to aspherical manifolds!

イロト イヨト イヨト

- (GromovQ) fails for non-aspherical manifolds, e.g.  $||S^{2n}|| = 0 \neq \chi(S^{2n})$ . However:
- If  $f: M \to N$  is an  $H_*(-; \mathbb{R})$ -equivalence, then we have:

$$\chi(M) = \chi(N)$$
 and  $(||M|| = 0 \Longrightarrow ||N|| = 0)$ .

Hence: if (GromovQ) holds for aspherical manifolds, then it must hold also for certain occ manifolds which are  $H_*$ -equivalent to aspherical manifolds!

Theorem (Löh-Moraschini-R.)

Let  $n \in \mathbb{N}_{>2}$  be even.

- There exist aspherical spaces X with an H<sub>\*</sub>(−; Z)-equivalence X → M to an occ n-manifold M such that ||X|| = 0 and χ(X) ≠ 0.
- ② There exist occ n-manifolds M with an H<sub>\*</sub>(-; Z)-equivalence X → M from an aspherical space X such that ||M|| = 0 and χ(M) ≠ 0.

イロト イロト イヨト イヨト

G. Raptis

990

< ロ ト < 回 ト < 三 ト < 三 ト</p>

• The Euler characteristic is the universal **additive** homotopy invariant. For compact manifolds  $(M, \partial M)$  and  $(N, \partial N)$  with  $\partial M = \partial N$ , we have:  $\chi(M \cup_{\partial} N) = \chi(M) + \chi(N) - \chi(\partial M).$ 

イロト イロト イヨト イヨト

• What about the simplicial volume?

• There is additivity in a restricted sense: For oriented compact *n*-manifolds  $(M, \partial M)$  and  $(N, \partial N)$  with  $\partial M = \partial N$  such that:

 $\pi_1 \partial M \cong \pi_1 \partial N$  is amenable and  $\partial M \subset M, \partial N \subset N$  are  $\pi_1$ -injective we have:

$$\|M \cup_{\partial} N\| = \|M, \partial M\| + \|N, \partial N\|.$$

naa

< ロ > < 同 > < 三 > < 三 >

• There is additivity in a restricted sense: For oriented compact *n*-manifolds  $(M, \partial M)$  and  $(N, \partial N)$  with  $\partial M = \partial N$  such that:

 $\pi_1 \partial M \cong \pi_1 \partial N$  is amenable and  $\partial M \subset M, \partial N \subset N$  are  $\pi_1$ -injective we have:

$$\|M\cup_{\partial} N\| = \|M, \partial M\| + \|N, \partial N\|.$$

• **Example**: ||M # N|| = ||M|| + ||N|| if  $n \ge 3$ . (This fails for n = 2!)

イロト イボト イヨト イヨト

• There is additivity in a restricted sense: For oriented compact *n*-manifolds  $(M, \partial M)$  and  $(N, \partial N)$  with  $\partial M = \partial N$  such that:

 $\pi_1 \partial M \cong \pi_1 \partial N$  is amenable and  $\partial M \subset M, \partial N \subset N$  are  $\pi_1$ -injective we have:

$$\|M\cup_{\partial} N\| = \|M, \partial M\| + \|N, \partial N\|.$$

• **Example**: ||M#N|| = ||M|| + ||N|| if  $n \ge 3$ . (This fails for n = 2!) On the other hand,  $\chi(M\#N) = \chi(M) + \chi(N) - \chi(S^n)$ .

イロト イヨト イヨト

• There is additivity in a restricted sense: For oriented compact *n*-manifolds  $(M, \partial M)$  and  $(N, \partial N)$  with  $\partial M = \partial N$  such that:

 $\pi_1 \partial M \cong \pi_1 \partial N$  is amenable and  $\partial M \subset M, \partial N \subset N$  are  $\pi_1$ -injective we have:

$$\|M\cup_{\partial} N\| = \|M, \partial M\| + \|N, \partial N\|.$$

Example: ||M#N|| = ||M|| + ||N|| if n ≥ 3. (This fails for n = 2!) On the other hand, χ(M#N) = χ(M) + χ(N) - χ(S<sup>n</sup>). But the connected sum of aspherical manifolds isn't aspherical for n ≥ 3...

イロト イヨト イヨト

• There is additivity in a restricted sense: For oriented compact *n*-manifolds  $(M, \partial M)$  and  $(N, \partial N)$  with  $\partial M = \partial N$  such that:

 $\pi_1 \partial M \cong \pi_1 \partial N$  is amenable and  $\partial M \subset M, \partial N \subset N$  are  $\pi_1$ -injective we have:

$$\|M\cup_{\partial} N\| = \|M, \partial M\| + \|N, \partial N\|.$$

- Example: ||M#N|| = ||M|| + ||N|| if n ≥ 3. (This fails for n = 2!) On the other hand, χ(M#N) = χ(M) + χ(N) χ(S<sup>n</sup>). But the connected sum of aspherical manifolds isn't aspherical for n ≥ 3...
- (Gromov's question for compact manifolds)  $(M, \partial M)$  oriented compact *n*-manifold such that *M* and  $\partial M$  are aspherical and  $\partial M \subset M$  is  $\pi_1$ -injective. Does the following implication hold?

$$\|M, \partial M\| = 0 \Longrightarrow \chi(M, \partial M) = 0.$$
 (GromovQ<sub>∂</sub>)

イロト イポト イヨト イヨト

• There is additivity in a restricted sense: For oriented compact *n*-manifolds  $(M, \partial M)$  and  $(N, \partial N)$  with  $\partial M = \partial N$  such that:

 $\pi_1 \partial M \cong \pi_1 \partial N$  is amenable and  $\partial M \subset M, \partial N \subset N$  are  $\pi_1$ -injective we have:

$$\|M\cup_{\partial} N\| = \|M, \partial M\| + \|N, \partial N\|.$$

- Example: ||M#N|| = ||M|| + ||N|| if n ≥ 3. (This fails for n = 2!) On the other hand, χ(M#N) = χ(M) + χ(N) χ(S<sup>n</sup>). But the connected sum of aspherical manifolds isn't aspherical for n ≥ 3...
- (Gromov's question for compact manifolds)  $(M, \partial M)$  oriented compact *n*-manifold such that *M* and  $\partial M$  are aspherical and  $\partial M \subset M$  is  $\pi_1$ -injective. Does the following implication hold?

$$\|M, \partial M\| = 0 \Longrightarrow \chi(M, \partial M) = 0.$$
 (GromovQ<sub>∂</sub>)

• **Proposition.** (Löh-Moraschini-R.) (GromovQ)  $\Longrightarrow$  (GromovQ<sub> $\partial$ </sub>).

200

Simplicial volume and the cobordism category

### Simplicial volume and (invertible) TQFTs

990

< ロ ト < 回 ト < 三 ト < 三 ト</p>

- **Cob**<sub>d</sub> oriented *d*-dimensional cobordism (homotopy) category:
  - Objects: M oriented closed (d 1)-manifold (one from each diffeomorphism class)
  - Morphisms: (*W*; *M*, *N*) oriented compact *d*-dimensional cobordism (up to diffeomorphism)

naa

イロト イボト イヨト イヨト

- **Cob**<sub>d</sub> oriented *d*-dimensional cobordism (homotopy) category:
  - Objects: M oriented closed (d 1)-manifold (one from each diffeomorphism class)
  - Morphisms: (*W*; *M*, *N*) oriented compact *d*-dimensional cobordism (up to diffeomorphism)

The additivity property of the Euler characteristic yields a (symmetric monoidal) functor:

 $\chi \colon \mathbf{Cob}_d \to \mathbb{Z}, \ (W; M, N) \mapsto \chi(W, M).$ 

イロト イヨト イヨト

- **Cob**<sub>d</sub> oriented *d*-dimensional cobordism (homotopy) category:
  - Objects: M oriented closed (d 1)-manifold (one from each diffeomorphism class)
  - Morphisms: (*W*; *M*, *N*) oriented compact *d*-dimensional cobordism (up to diffeomorphism)

The additivity property of the Euler characteristic yields a (symmetric monoidal) functor:

 $\chi \colon \mathbf{Cob}_d \to \mathbb{Z}, \ (W; M, N) \mapsto \chi(W, M).$ 

•  $\mathbf{Cob}_d^{\mathrm{Am}} \subseteq \mathbf{Cob}_d$  *d*-dimensional amenable cobordism subcategory:

- Objects: *M* oriented closed (d 1)-manifold with  $\pi_1 M$  amenable (one from each diffeomorphism class)
- Morphisms: (W; M, N) oriented compact *d*-dimensional cobordism with

$$M \hookrightarrow W \hookleftarrow N$$

 $\pi_1$ -injective (up to diffeomorphism)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- **Cob**<sub>d</sub> oriented *d*-dimensional cobordism (homotopy) category:
  - Objects: M oriented closed (d 1)-manifold (one from each diffeomorphism class)
  - Morphisms: (*W*; *M*, *N*) oriented compact *d*-dimensional cobordism (up to diffeomorphism)

The additivity property of the Euler characteristic yields a (symmetric monoidal) functor:

 $\chi \colon \mathbf{Cob}_d \to \mathbb{Z}, \ (W; M, N) \mapsto \chi(W, M).$ 

•  $\mathbf{Cob}_d^{\mathrm{Am}} \subseteq \mathbf{Cob}_d$  *d*-dimensional amenable cobordism subcategory:

- Objects: *M* oriented closed (d-1)-manifold with  $\pi_1 M$  amenable (one from each diffeomorphism class)
- Morphisms: (W; M, N) oriented compact *d*-dimensional cobordism with

$$M \hookrightarrow W \hookleftarrow N$$

 $\pi_1$ -injective (up to diffeomorphism)

The additivity property of the simplicial volume yields a (symmetric monoidal) functor:

$$\|-\|: \mathbf{Cob}_d^{\mathrm{Am}} \to \mathbb{R}, \ (W; M, N) \mapsto \|W, \partial W\|.$$

Simplicial volume and the cobordism category

# Simplicial volume and (invertible) TQFTs (ctd.)

990

< □ > < □ > < □ > < Ξ > < Ξ >

Recall: for any category **C** and object  $x \in \mathbf{C}$ , we have maps:

 $\mathbf{C}(x,x) \rightarrow \Omega_x B \mathbf{C} \rightarrow \pi_1(B \mathbf{C},x)$ 

Sar

イロト イロト イヨト イヨト

Recall: for any category **C** and object  $x \in \mathbf{C}$ , we have maps:

 $\mathbf{C}(x,x) \rightarrow \Omega_x B \mathbf{C} \rightarrow \pi_1(B \mathbf{C},x)$ 

and for any functor  $F : \mathbf{C} \to \mathbb{R}$ , there is an induced homomorphism:

 $\pi_1(B\mathbf{C}, x) \to \pi_1(\Omega B\mathbb{R}, *) \cong \mathbb{R}.$ 

Sar

イロト イポト イヨト イヨト

Recall: for any category **C** and object  $x \in \mathbf{C}$ , we have maps:

 $\mathbf{C}(x,x) \rightarrow \Omega_x B \mathbf{C} \rightarrow \pi_1(B \mathbf{C},x)$ 

and for any functor  $F : \mathbf{C} \to \mathbb{R}$ , there is an induced homomorphism:

 $\pi_1(B\mathbf{C}, x) \to \pi_1(\Omega B\mathbb{R}, *) \cong \mathbb{R}.$ 

Corollary (Löh-Moraschini-R.)

 $\pi_1(B\mathbf{Cob}_4^{\mathrm{Am}}, [\varnothing])$  is not finitely generated.

イロト イヨト イヨト

Recall: for any category **C** and object  $x \in \mathbf{C}$ , we have maps:

 $\mathbf{C}(x,x) \rightarrow \Omega_x B \mathbf{C} \rightarrow \pi_1(B \mathbf{C},x)$ 

and for any functor  $F : \mathbf{C} \to \mathbb{R}$ , there is an induced homomorphism:

 $\pi_1(B\mathbf{C}, x) \to \pi_1(\Omega B\mathbb{R}, *) \cong \mathbb{R}.$ 

Corollary (Löh-Moraschini-R.)

 $\pi_1(B\mathbf{Cob}_4^{\mathrm{Am}}, [\varnothing])$  is not finitely generated.

**Proof.** The image of  $\pi_1(B\mathbf{Cob}_4^{\operatorname{Am}}, [\varnothing])$  in  $\mathbb{R}$  contains the simplicial volumes of all occ 4-manifolds. The simplicial volumes of occ 4-manifolds contain an infinite set of values which are linearly independent over  $\mathbb{Q}$  (Heuer-Löh).  $\Box$ 

イロト イポト イヨト イヨト
Recall: for any category **C** and object  $x \in \mathbf{C}$ , we have maps:

 $\mathbf{C}(x,x) \rightarrow \Omega_x B \mathbf{C} \rightarrow \pi_1(B \mathbf{C},x)$ 

and for any functor  $F : \mathbf{C} \to \mathbb{R}$ , there is an induced homomorphism:

 $\pi_1(B\mathbf{C}, x) \to \pi_1(\Omega B\mathbb{R}, *) \cong \mathbb{R}.$ 

Corollary (Löh-Moraschini-R.)

 $\pi_1(B\mathbf{Cob}_4^{\operatorname{Am}}, [\varnothing])$  is not finitely generated.

**Proof.** The image of  $\pi_1(B\mathbf{Cob}_4^{\operatorname{Am}}, [\varnothing])$  in  $\mathbb{R}$  contains the simplicial volumes of all occ 4-manifolds. The simplicial volumes of occ 4-manifolds contain an infinite set of values which are linearly independent over  $\mathbb{Q}$  (Heuer-Löh).  $\Box$ 

Proposition (Löh-Moraschini-R.)

There is no functor  $F : \mathbf{Cob}_d \to \mathbb{R}$  which agrees with the simplicial volume on closed d-manifolds (viewed as endomorphisms of  $\emptyset$ ).

Proposition (Löh-Moraschini-R.)

There is no functor  $F : \mathbf{Cob}_d \to \mathbb{R}$  which agrees with the simplicial volume on closed d-manifolds (viewed as endomorphisms of  $\emptyset$ ).

Proof.

Proposition (Löh-Moraschini-R.)

There is no functor  $F : \mathbf{Cob}_d \to \mathbb{R}$  which agrees with the simplicial volume on closed d-manifolds (viewed as endomorphisms of  $\emptyset$ ).

Proof.

The existence of such  $F: \mathbf{Cob}_d \to \mathbb{R}$  would imply that the simplicial volume of occ *d*-manifolds  $\|-\|: \mathbf{Cob}_d(\emptyset, \emptyset) \to \mathbb{R}$  factors through a homomorphism

 $\pi_1(B\mathbf{Cob}_d, [\varnothing]) \to \mathbb{R}.$ 

Proposition (Löh-Moraschini-R.)

There is no functor  $F : \mathbf{Cob}_d \to \mathbb{R}$  which agrees with the simplicial volume on closed d-manifolds (viewed as endomorphisms of  $\emptyset$ ).

Proof.

The existence of such  $F: \mathbf{Cob}_d \to \mathbb{R}$  would imply that the simplicial volume of occ *d*-manifolds  $\|-\|: \mathbf{Cob}_d(\emptyset, \emptyset) \to \mathbb{R}$  factors through a homomorphism

 $\pi_1(B\mathbf{Cob}_d, [\varnothing]) \to \mathbb{R}.$ 

From the identification of the homotopy type of the (topologized) cobordism category [GMTW], there is a short exact sequence:

$$0 \to (\mathsf{cyclic\ group}) \xrightarrow{[1] \mapsto [S^d]} \pi_1(B\mathbf{Cob}_d, [\varnothing]) \to \Omega_d^{SO} \to 0$$

where the middle term is the Reinhart vector field bordism group.

Proposition (Löh-Moraschini-R.)

There is no functor  $F : \mathbf{Cob}_d \to \mathbb{R}$  which agrees with the simplicial volume on closed d-manifolds (viewed as endomorphisms of  $\emptyset$ ).

Proof.

The existence of such  $F: \mathbf{Cob}_d \to \mathbb{R}$  would imply that the simplicial volume of occ *d*-manifolds  $\|-\|: \mathbf{Cob}_d(\emptyset, \emptyset) \to \mathbb{R}$  factors through a homomorphism

 $\pi_1(B\mathbf{Cob}_d, [\varnothing]) \to \mathbb{R}.$ 

From the identification of the homotopy type of the (topologized) cobordism category [GMTW], there is a short exact sequence:

$$0 \to (\mathsf{cyclic group}) \xrightarrow{[1] \mapsto [S^d]} \pi_1(B\mathbf{Cob}_d, [\varnothing]) \to \Omega_d^{SO} \to 0$$

where the middle term is the Reinhart vector field bordism group. As  $||S^d|| = 0$ , the homomorphism would factor through the oriented bordism group  $\Omega_d^{SO}$ .

Proposition (Löh-Moraschini-R.)

There is no functor  $F : \mathbf{Cob}_d \to \mathbb{R}$  which agrees with the simplicial volume on closed d-manifolds (viewed as endomorphisms of  $\emptyset$ ).

Proof.

The existence of such  $F: \mathbf{Cob}_d \to \mathbb{R}$  would imply that the simplicial volume of occ *d*-manifolds  $\|-\|: \mathbf{Cob}_d(\emptyset, \emptyset) \to \mathbb{R}$  factors through a homomorphism

 $\pi_1(B\mathbf{Cob}_d, [\varnothing]) \to \mathbb{R}.$ 

From the identification of the homotopy type of the (topologized) cobordism category [GMTW], there is a short exact sequence:

$$0 \to (\mathsf{cyclic group}) \xrightarrow{[1] \mapsto [S^d]} \pi_1(B\mathbf{Cob}_d, [\varnothing]) \to \Omega_d^{SO} \to 0$$

where the middle term is the Reinhart vector field bordism group. As  $||S^d|| = 0$ , the homomorphism would factor through the oriented bordism group  $\Omega_d^{SO}$ . But the simplicial volume isn't bordism invariant.

990

< ロ > < 回 > < 回 > < 回 > < 回 >

• *M* occ *n*-manifold,  $(N, \partial N)$  oriented compact *m*-manifold, then:

$$\|M\| \cdot \|N, \partial N\| \le \|M \times N, M \times \partial N\| \le {n+m \choose n} \|M\| \cdot \|N, \partial N\|.$$

nac

< ロ ト < 回 ト < 三 ト < 三 ト</p>

• *M* occ *n*-manifold,  $(N, \partial N)$  oriented compact *m*-manifold, then:

$$\|M\| \cdot \|N, \partial N\| \le \|M \times N, M \times \partial N\| \le \binom{n+m}{n} \|M\| \cdot \|N, \partial N\|.$$

• **Question:** Given oriented compact *n*-manifolds  $(M, \partial M)$  and  $(N, \partial N)$  with non-empty connected boundary (...perhaps with vanishing relative simplicial volume?). Does it follow that

$$\|M \times N, \partial\| = 0?$$

This could lead to counterexamples to (GromovQ)...

イロト イロト イヨト イヨト

• *M* occ *n*-manifold,  $(N, \partial N)$  oriented compact *m*-manifold, then:

$$\|M\| \cdot \|N, \partial N\| \le \|M \times N, M \times \partial N\| \le \binom{n+m}{n} \|M\| \cdot \|N, \partial N\|.$$

• **Question:** Given oriented compact *n*-manifolds  $(M, \partial M)$  and  $(N, \partial N)$  with non-empty connected boundary (...perhaps with vanishing relative simplicial volume?). Does it follow that

$$\|M \times N, \partial\| = 0?$$

This could lead to counterexamples to (GromovQ)...

**Remark**: this property holds for products of  $\geq 3$  factors (Gromov). (But  $\partial(M_1 \times M_2 \times M_3)$  is not aspherical, even if  $M_i$  and  $\partial M_i$  are aspherical and  $\partial M_i \subset M_i$  are  $\pi_1$ -injective...)

14 October 2022 15 / 15

イロト イロト イヨト イヨト