Simplicial volumes, bounded cohomology, and Euler characteristics of (aspherical) manifolds

Workshop "Cobordisms, Strings, and Thom Spectra"
BIRS-CMO, Oaxaca, 9-14 October, 2022

George Raptis
University of Regensburg

14 October 2022

Introduction

Introduction

Question (Gromov)

Let M be an oriented closed aspherical manifold. Does the following implication hold?

$$
\|M\|=0 \Longrightarrow \chi(M)=0
$$

Simplicial volume: Basic definitions

Simplicial volume: Basic definitions

- X topological space, $\sigma=\sum a_{i} \sigma_{i} \in C_{n}(X ; \mathbb{R})$ (reduced) singular n-chain

$$
\|\sigma\|_{1}=\sum\left|a_{i}\right| \in \mathbb{R}_{\geq 0} \quad\left(\ell^{1} \text {-norm }\right)
$$

Simplicial volume: Basic definitions

- X topological space, $\sigma=\sum a_{i} \sigma_{i} \in C_{n}(X ; \mathbb{R})$ (reduced) singular n-chain

$$
\|\sigma\|_{1}=\sum\left|a_{i}\right| \in \mathbb{R}_{\geq 0} \quad\left(\ell^{1} \text {-norm }\right)
$$

- M oriented closed connected (= occ) n-manifold

$$
\begin{aligned}
\|M\| & =\inf \left\{\|\sigma\|_{1} \mid \sigma \text { fundamental } \mathbb{R} \text {-cycle of } \mathrm{M}\right\} \\
& \left.=\|[M]\|_{1} \geq 0 \quad \text { (} \ell^{1} \text {-seminorm on homology }\right) .
\end{aligned}
$$

Simplicial volume: Basic definitions

- X topological space, $\sigma=\sum a_{i} \sigma_{i} \in C_{n}(X ; \mathbb{R})$ (reduced) singular n-chain

$$
\|\sigma\|_{1}=\sum\left|a_{i}\right| \in \mathbb{R}_{\geq 0} \quad\left(\ell^{1} \text {-norm }\right)
$$

- M oriented closed connected (= occ) n-manifold

$$
\begin{aligned}
\|M\| & =\inf \left\{\|\sigma\|_{1} \mid \sigma \text { fundamental } \mathbb{R} \text {-cycle of } \mathrm{M}\right\} \\
& \left.=\|[M]\|_{1} \geq 0 \quad \text { (} \ell^{1} \text {-seminorm on homology }\right) .
\end{aligned}
$$

- $(M, \partial M)$ oriented compact n-manifold

$$
\|M, \partial M\|=\|[M, \partial M]\|_{1} \geq 0
$$

Simplicial volume: Some main results

Simplicial volume: Some main results

- (Functoriality) M, N occ n-manifolds, $f: M \rightarrow N$ with $d=\operatorname{deg}(f) \in \mathbb{Z}$, then:

$$
\|M\| \geq|d| \cdot\|N\| .
$$

Simplicial volume: Some main results

- (Functoriality) M, N occ n-manifolds, $f: M \rightarrow N$ with $d=\operatorname{deg}(f) \in \mathbb{Z}$, then:

$$
\|M\| \geq|d| \cdot\|N\| .
$$

Consequences:

- $M \simeq N \Longrightarrow\|M\|=\|N\|$.

Simplicial volume: Some main results

- (Functoriality) M, N occ n-manifolds, $f: M \rightarrow N$ with $d=\operatorname{deg}(f) \in \mathbb{Z}$, then:

$$
\|M\| \geq|d| \cdot\|N\| .
$$

Consequences:

- $M \simeq N \Longrightarrow\|M\|=\|N\|$.
- $\exists f: M \rightarrow M$ with $|\operatorname{deg}(f)| \geq 2 \Longrightarrow\|M\|=0$. (e.g. $\left\|S^{n}\right\|=0$)

Simplicial volume: Some main results

- (Functoriality) M, N occ n-manifolds, $f: M \rightarrow N$ with $d=\operatorname{deg}(f) \in \mathbb{Z}$, then:

$$
\|M\| \geq|d| \cdot\|N\| .
$$

Consequences:

- $M \simeq N \Longrightarrow\|M\|=\|N\|$.
- $\exists f: M \rightarrow M$ with $|\operatorname{deg}(f)| \geq 2 \Longrightarrow\|M\|=0$. (e.g. $\left\|S^{n}\right\|=0$)
- (Minimal volume) M occ smooth n-manifold, then:

$$
\|M\| \leq C_{n} \cdot \operatorname{Min} \operatorname{Vol}(M)
$$

where $\operatorname{MinVol}(M):=\inf \{\operatorname{Vol}(M, g)| | \sec (g) \mid \leq 1\}$.

Simplicial volume: Some main results

- (Functoriality) M, N occ n-manifolds, $f: M \rightarrow N$ with $d=\operatorname{deg}(f) \in \mathbb{Z}$, then:

$$
\|M\| \geq|d| \cdot\|N\| .
$$

Consequences:

- $M \simeq N \Longrightarrow\|M\|=\|N\|$.
- $\exists f: M \rightarrow M$ with $|\operatorname{deg}(f)| \geq 2 \Longrightarrow\|M\|=0$. (e.g. $\left\|S^{n}\right\|=0$)
- (Minimal volume) M occ smooth n-manifold, then:

$$
\|M\| \leq C_{n} \cdot \operatorname{MinVol}(M)
$$

where $\operatorname{MinVol}(M):=\inf \{\operatorname{Vol}(M, g)| | \sec (g) \mid \leq 1\}$.

- (Negative curvature) (M, g) occ Riemannian n-manifold with sectional curvature $\leq \delta<0$, then:

$$
\|M\| \geq C_{n, \delta} \cdot \operatorname{Vol}(M, g)>0
$$

Simplicial volume: Some main results

- (Functoriality) M, N occ n-manifolds, $f: M \rightarrow N$ with $d=\operatorname{deg}(f) \in \mathbb{Z}$, then:

$$
\|M\| \geq|d| \cdot\|N\| .
$$

Consequences:

- $M \simeq N \Longrightarrow\|M\|=\|N\|$.
- $\exists f: M \rightarrow M$ with $|\operatorname{deg}(f)| \geq 2 \Longrightarrow\|M\|=0$. (e.g. $\left\|S^{n}\right\|=0$)
- (Minimal volume) M occ smooth n-manifold, then:

$$
\|M\| \leq C_{n} \cdot \operatorname{Min} \operatorname{Vol}(M)
$$

where $\operatorname{MinVol}(M):=\inf \{\operatorname{Vol}(M, g)| | \sec (g) \mid \leq 1\}$.

- (Negative curvature) (M, g) occ Riemannian n-manifold with sectional curvature $\leq \delta<0$, then:

$$
\|M\| \geq C_{n, \delta} \cdot \operatorname{Vol}(M, g)>0
$$

M hyperbolic n-manifold, then:

$$
\|M\|=\frac{\operatorname{Vol}(M)}{v_{n}}>0 . \quad \text { (Gromov-Thurston) }
$$

(e.g. $\left.\left\|\Sigma_{g}\right\|=4 g-4.\right)$

Simplicial volume via bounded cohomology

Simplicial volume via bounded cohomology

- An n-cochain $\phi \in C^{n}(X ; \mathbb{R})$ is bounded if $\left\{\phi(\sigma) \mid \sigma: \Delta^{n} \rightarrow X\right\} \subseteq \mathbb{R}$ is bounded.

Simplicial volume via bounded cohomology

- An n-cochain $\phi \in C^{n}(X ; \mathbb{R})$ is bounded if $\left\{\phi(\sigma) \mid \sigma: \Delta^{n} \rightarrow X\right\} \subseteq \mathbb{R}$ is bounded. (Equivalently: the \mathbb{R}-linear map $\phi: C_{n}(X ; \mathbb{R}) \rightarrow \mathbb{R}$ is bounded in the operator norm.)

Simplicial volume via bounded cohomology

- An n-cochain $\phi \in C^{n}(X ; \mathbb{R})$ is bounded if $\left\{\phi(\sigma) \mid \sigma: \Delta^{n} \rightarrow X\right\} \subseteq \mathbb{R}$ is bounded. (Equivalently: the \mathbb{R}-linear map $\phi: C_{n}(X ; \mathbb{R}) \rightarrow \mathbb{R}$ is bounded in the operator norm.)
$C_{b}^{\bullet}(X ; \mathbb{R}) \subseteq C^{\bullet}(X ; \mathbb{R})$ subcomplex of the singular cochain complex defined by the bounded cochains

Simplicial volume via bounded cohomology

- An n-cochain $\phi \in C^{n}(X ; \mathbb{R})$ is bounded if $\left\{\phi(\sigma) \mid \sigma: \Delta^{n} \rightarrow X\right\} \subseteq \mathbb{R}$ is bounded. (Equivalently: the \mathbb{R}-linear map $\phi: C_{n}(X ; \mathbb{R}) \rightarrow \mathbb{R}$ is bounded in the operator norm.)
$C_{b}^{\bullet}(X ; \mathbb{R}) \subseteq C^{\bullet}(X ; \mathbb{R})$ subcomplex of the singular cochain complex defined by the bounded cochains
$H_{b}^{n}(X ; \mathbb{R}):=H^{n}\left(C_{b}^{\bullet}(X ; \mathbb{R})\right)$ (bounded cohomology of the space X)

Simplicial volume via bounded cohomology

- An n-cochain $\phi \in C^{n}(X ; \mathbb{R})$ is bounded if $\left\{\phi(\sigma) \mid \sigma: \Delta^{n} \rightarrow X\right\} \subseteq \mathbb{R}$ is bounded. (Equivalently: the \mathbb{R}-linear map $\phi: C_{n}(X ; \mathbb{R}) \rightarrow \mathbb{R}$ is bounded in the operator norm.)
$C_{b}^{\bullet}(X ; \mathbb{R}) \subseteq C^{\bullet}(X ; \mathbb{R})$ subcomplex of the singular cochain complex defined by the bounded cochains

$$
H_{b}^{n}(X ; \mathbb{R}):=H^{n}\left(C_{b}^{\bullet}(X ; \mathbb{R})\right) \text { (bounded cohomology of the space } X \text {) }
$$

- Comparison map: $c_{X}^{n}: H_{b}^{n}(X ; \mathbb{R}) \rightarrow H^{n}(X ; \mathbb{R}), n \geq 0$.

Theorem (Duality principle)
M oriented closed connected n-manifold. Then:
(1) $\|M\|=\left\|H_{b}^{n}(M ; \mathbb{R}) \xrightarrow{c_{M}^{n}} H^{n}(M ; \mathbb{R}) \stackrel{n[M]}{\cong} \mathbb{R}\right\|$.
(2) $\|M\|>0 \Longleftrightarrow c_{M}^{n}$ is surjective/non-trivial.

Simplicial volume via bounded cohomology

- An n-cochain $\phi \in C^{n}(X ; \mathbb{R})$ is bounded if $\left\{\phi(\sigma) \mid \sigma: \Delta^{n} \rightarrow X\right\} \subseteq \mathbb{R}$ is bounded. (Equivalently: the \mathbb{R}-linear map $\phi: C_{n}(X ; \mathbb{R}) \rightarrow \mathbb{R}$ is bounded in the operator norm.)
$C_{b}^{\bullet}(X ; \mathbb{R}) \subseteq C^{\bullet}(X ; \mathbb{R})$ subcomplex of the singular cochain complex defined by the bounded cochains

$$
H_{b}^{n}(X ; \mathbb{R}):=H^{n}\left(C_{b}^{\bullet}(X ; \mathbb{R})\right) \text { (bounded cohomology of the space } X \text {) }
$$

- Comparison map: $c_{X}^{n}: H_{b}^{n}(X ; \mathbb{R}) \rightarrow H^{n}(X ; \mathbb{R}), n \geq 0$.

Theorem (Duality principle)

M oriented closed connected n-manifold. Then:
(1) $\|M\|=\left\|H_{b}^{n}(M ; \mathbb{R}) \xrightarrow{c_{M}^{n}} H^{n}(M ; \mathbb{R}) \stackrel{n[M]}{\cong} \mathbb{R}\right\|$.
(2) $\|M\|>0 \Longleftrightarrow c_{M}^{n}$ is surjective/non-trivial.

- (Löh-Moraschini-R.) If $\|M\|=0$, then "at least half" of the cohomology classes of M are unbounded ($=$ not in the image of the comparison map).

Bounded cohomology (I): The Mapping Theorem

Bounded cohomology (I): The Mapping Theorem

The bounded cohomology of X depends only on $\pi_{1}(X)$ (for coefficients in $\mathbb{R}!$):

Bounded cohomology (I): The Mapping Theorem

The bounded cohomology of X depends only on $\pi_{1}(X)$ (for coefficients in $\mathbb{R}!$):
Theorem (Gromov's Mapping Theorem)
Let $f: X \rightarrow Y$ be a π_{1}-surjective map of path-connected spaces such that the kernel of $\pi_{1}(f)$ is amenable. Then: $H_{b}^{\bullet}(f ; \mathbb{R}): H_{b}^{\bullet}(Y ; \mathbb{R}) \stackrel{\cong}{\rightrightarrows} H_{b}^{\bullet}(X ; \mathbb{R})$. So also: $H_{b}^{\bullet}(X ; \mathbb{R}) \cong H_{b}^{\bullet}\left(B \pi_{1}(X) ; \mathbb{R}\right)$ and $H_{b}^{\bullet}(B G ; \mathbb{R}) \cong H_{b}^{\bullet}(* ; \mathbb{R})$ if G is amenable.

Bounded cohomology (I): The Mapping Theorem

The bounded cohomology of X depends only on $\pi_{1}(X)$ (for coefficients in $\mathbb{R}!$):
Theorem (Gromov's Mapping Theorem)
Let $f: X \rightarrow Y$ be a π_{1}-surjective map of path-connected spaces such that the kernel of $\pi_{1}(f)$ is amenable. Then: $H_{b}^{\bullet}(f ; \mathbb{R}): H_{b}^{\bullet}(Y ; \mathbb{R}) \stackrel{\cong}{\rightrightarrows} H_{b}^{\bullet}(X ; \mathbb{R})$. So also: $H_{b}^{\bullet}(X ; \mathbb{R}) \cong H_{b}^{\circ}\left(B \pi_{1}(X) ; \mathbb{R}\right)$ and $H_{b}^{\circ}(B G ; \mathbb{R}) \cong H_{b}^{\bullet}(* ; \mathbb{R})$ if G is amenable.

- We have $H_{b}^{\circ}(B G ; \mathbb{R}) \cong H_{b}^{\circ}(G ; \mathbb{R})$ - as in usual group cohomology but using bounded cochains.

Bounded cohomology (I): The Mapping Theorem

The bounded cohomology of X depends only on $\pi_{1}(X)$ (for coefficients in $\mathbb{R}!$):
Theorem (Gromov's Mapping Theorem)
Let $f: X \rightarrow Y$ be a π_{1}-surjective map of path-connected spaces such that the kernel of $\pi_{1}(f)$ is amenable. Then: $H_{b}^{\bullet}(f ; \mathbb{R}): H_{b}^{\bullet}(Y ; \mathbb{R}) \stackrel{\cong}{\rightrightarrows} H_{b}^{\bullet}(X ; \mathbb{R})$. So also: $H_{b}^{\bullet}(X ; \mathbb{R}) \cong H_{b}^{\circ}\left(B \pi_{1}(X) ; \mathbb{R}\right)$ and $H_{b}^{\circ}(B G ; \mathbb{R}) \cong H_{b}^{\bullet}(* ; \mathbb{R})$ if G is amenable.

- We have $H_{b}^{\circ}(B G ; \mathbb{R}) \cong H_{b}^{\circ}(G ; \mathbb{R})$ - as in usual group cohomology but using bounded cochains.
- These are the right derived functors of G-invariants in a category of Banach $\mathbb{R}[G]$-modules (Ivanov, Bühler,...). This is the functional analytic origin of bounded cohomology.

Bounded cohomology (I): The Mapping Theorem

The bounded cohomology of X depends only on $\pi_{1}(X)$ (for coefficients in $\mathbb{R}!$):
Theorem (Gromov's Mapping Theorem)
Let $f: X \rightarrow Y$ be a π_{1}-surjective map of path-connected spaces such that the kernel of $\pi_{1}(f)$ is amenable. Then: $H_{b}^{\bullet}(f ; \mathbb{R}): H_{b}^{\bullet}(Y ; \mathbb{R}) \stackrel{\cong}{\rightrightarrows} H_{b}^{\bullet}(X ; \mathbb{R})$. So also: $H_{b}^{\bullet}(X ; \mathbb{R}) \cong H_{b}^{\bullet}\left(B \pi_{1}(X) ; \mathbb{R}\right)$ and $H_{b}^{\bullet}(B G ; \mathbb{R}) \cong H_{b}^{\bullet}(* ; \mathbb{R})$ if G is amenable.

The conclusion of the theorem is stronger. $H_{b}^{*}(f ; V)$ is an isomorphism for all dual normed $\mathbb{R}\left[\pi_{1}(X)\right]$-modules V. (Ivanov, ...)

Bounded cohomology (I): The Mapping Theorem

The bounded cohomology of X depends only on $\pi_{1}(X)$ (for coefficients in $\mathbb{R}!$):
Theorem (Gromov's Mapping Theorem)
Let $f: X \rightarrow Y$ be a π_{1}-surjective map of path-connected spaces such that the kernel of $\pi_{1}(f)$ is amenable. Then: $H_{b}^{\bullet}(f ; \mathbb{R}): H_{b}^{\bullet}(Y ; \mathbb{R}) \stackrel{\cong}{\rightrightarrows} H_{b}^{\bullet}(X ; \mathbb{R})$. So also: $H_{b}^{\bullet}(X ; \mathbb{R}) \cong H_{b}^{\bullet}\left(B \pi_{1}(X) ; \mathbb{R}\right)$ and $H_{b}^{\bullet}(B G ; \mathbb{R}) \cong H_{b}^{\bullet}(* ; \mathbb{R})$ if G is amenable.

The conclusion of the theorem is stronger. $H_{b}^{*}(f ; V)$ is an isomorphism for all dual normed $\mathbb{R}\left[\pi_{1}(X)\right]$-modules V. (Ivanov, ...)
We call such maps f amenable.

Bounded cohomology (I): The Mapping Theorem

The bounded cohomology of X depends only on $\pi_{1}(X)$ (for coefficients in $\mathbb{R}!$):
Theorem (Gromov's Mapping Theorem)
Let $f: X \rightarrow Y$ be a π_{1}-surjective map of path-connected spaces such that the kernel of $\pi_{1}(f)$ is amenable. Then: $H_{b}^{\bullet}(f ; \mathbb{R}): H_{b}^{\bullet}(Y ; \mathbb{R}) \stackrel{\cong}{\rightrightarrows} H_{b}^{\bullet}(X ; \mathbb{R})$. So also: $H_{b}^{\bullet}(X ; \mathbb{R}) \cong H_{b}^{\bullet}\left(B \pi_{1}(X) ; \mathbb{R}\right)$ and $H_{b}^{\bullet}(B G ; \mathbb{R}) \cong H_{b}^{\bullet}(* ; \mathbb{R})$ if G is amenable.

The conclusion of the theorem is stronger. $H_{b}^{*}(f ; V)$ is an isomorphism for all dual normed $\mathbb{R}\left[\pi_{1}(X)\right]$-modules V. (Ivanov, ...)
We call such maps f amenable.
Then the converse also holds (a relative version of Johnson's characterization of amenability):

Theorem (Moraschini-R.; converse to the Mapping Theorem)
Let $f: X \rightarrow Y$ be a π_{1}-surjective map of path-connected spaces with homotopy fiber F. Then: $f: X \rightarrow Y$ is amenable iff $\pi_{1}(F)$ is amenable.

Bounded cohomology (II): The Vanishing Theorem

Bounded cohomology (II): The Vanishing Theorem

We have seen: M occ n-manifold $(n>0)$ with $\pi_{1} M$ amenable, then it follows $H_{b}^{k}(M ; \mathbb{R}) \cong 0$ for $k>0$ and so $\|M\|=0$.

Bounded cohomology (II): The Vanishing Theorem

We have seen: M occ n-manifold $(n>0)$ with $\pi_{1} M$ amenable, then it follows $H_{b}^{k}(M ; \mathbb{R}) \cong 0$ for $k>0$ and so $\|M\|=0$. But there is a stronger vanishing result:

Theorem (Gromov's Vanishing Theorem)
Suppose that M admits an open cover $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ with the properties: (1) for all $i \in I$ and $x \in U_{i}$, the image of $\pi_{1}\left(U_{i}, x\right) \rightarrow \pi_{1}(M, x)$ is amenable; (2) for all $\sigma \subseteq I$ with $|\sigma| \geq n+1$, the intersection $U_{\sigma}=\bigcap_{i \in \sigma} U_{i}$ is empty; then: $\|M\|=0$.

Bounded cohomology (II): The Vanishing Theorem

We have seen: M occ n-manifold $(n>0)$ with $\pi_{1} M$ amenable, then it follows $H_{b}^{k}(M ; \mathbb{R}) \cong 0$ for $k>0$ and so $\|M\|=0$. But there is a stronger vanishing result:

Theorem (Gromov's Vanishing Theorem)
Suppose that M admits an open cover $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ with the properties:
(1) for all $i \in I$ and $x \in U_{i}$, the image of $\pi_{1}\left(U_{i}, x\right) \rightarrow \pi_{1}(M, x)$ is amenable;
(2) for all $\sigma \subseteq I$ with $|\sigma| \geq n+1$, the intersection $U_{\sigma}=\bigcap_{i \in \sigma} U_{i}$ is empty; then: $\|M\|=0$.

A new proof approach :

Bounded cohomology (II): The Vanishing Theorem

We have seen: M occ n-manifold $(n>0)$ with $\pi_{1} M$ amenable, then it follows $H_{b}^{k}(M ; \mathbb{R}) \cong 0$ for $k>0$ and so $\|M\|=0$. But there is a stronger vanishing result:

Theorem (Gromov's Vanishing Theorem)

Suppose that M admits an open cover $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ with the properties:
(1) for all $i \in I$ and $x \in U_{i}$, the image of $\pi_{1}\left(U_{i}, x\right) \rightarrow \pi_{1}(M, x)$ is amenable;
(2) for all $\sigma \subseteq I$ with $|\sigma| \geq n+1$, the intersection $U_{\sigma}=\bigcap_{i \in \sigma} U_{i}$ is empty; then: $\|M\|=0$.

A new proof approach : Bounded cohomology is not excisive - few non-trivial bounded cohomology groups are known! Actually: the natural comparison map at the level of cochain complexes:

$$
c_{M}: C_{b}^{\bullet}(M ; \mathbb{R}) \rightarrow C^{\bullet}(M ; \mathbb{R})
$$

is the coassembly map for bounded cohomology.

Bounded cohomology (II): The Vanishing Theorem

We have seen: M occ n-manifold $(n>0)$ with $\pi_{1} M$ amenable, then it follows $H_{b}^{k}(M ; \mathbb{R}) \cong 0$ for $k>0$ and so $\|M\|=0$. But there is a stronger vanishing result:

Theorem (Gromov's Vanishing Theorem)

Suppose that M admits an open cover $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ with the properties:
(1) for all $i \in I$ and $x \in U_{i}$, the image of $\pi_{1}\left(U_{i}, x\right) \rightarrow \pi_{1}(M, x)$ is amenable;
(2) for all $\sigma \subseteq I$ with $|\sigma| \geq n+1$, the intersection $U_{\sigma}=\bigcap_{i \in \sigma} U_{i}$ is empty; then: $\|M\|=0$.

A new proof approach : Bounded cohomology is not excisive - few non-trivial bounded cohomology groups are known! Actually: the natural comparison map at the level of cochain complexes:

$$
c_{M}: C_{b}^{\bullet}(M ; \mathbb{R}) \rightarrow C^{\bullet}(M ; \mathbb{R})
$$

is the coassembly map for bounded cohomology. Then the goal is to construct a factorization of c_{M} through a cochain complex concentrated in degrees $<n$.

Bounded cohomology (II): The Vanishing Theorem

We have seen: M occ n-manifold ($n>0$) with $\pi_{1} M$ amenable, then it follows $H_{b}^{k}(M ; \mathbb{R}) \cong 0$ for $k>0$ and so $\|M\|=0$. But there is a stronger vanishing result:

Theorem (Gromov's Vanishing Theorem)
Suppose that M admits an open cover $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ with the properties:
(1) for all $i \in I$ and $x \in U_{i}$, the image of $\pi_{1}\left(U_{i}, x\right) \rightarrow \pi_{1}(M, x)$ is amenable;
(2) for all $\sigma \subseteq I$ with $|\sigma| \geq n+1$, the intersection $U_{\sigma}=\bigcap_{i \in \sigma} U_{i}$ is empty; then: $\|M\|=0$.

A new proof approach : By (1), the Moore-Postnikov truncation of $U_{\sigma} \subseteq X$ (truncating π_{1}):

$$
U_{\sigma} \rightarrow V_{\sigma} \rightarrow X
$$

has the property that $H_{b}^{\bullet}\left(V_{\sigma} ; \mathbb{R}\right)$ is concentrated in degree 0 . Note that U_{σ} may not be path-connected.

Bounded cohomology (II): The Vanishing Theorem

We have seen: M occ n-manifold ($n>0$) with $\pi_{1} M$ amenable, then it follows $H_{b}^{k}(M ; \mathbb{R}) \cong 0$ for $k>0$ and so $\|M\|=0$. But there is a stronger vanishing result:

Theorem (Gromov's Vanishing Theorem)

Suppose that M admits an open cover $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ with the properties:
(1) for all $i \in I$ and $x \in U_{i}$, the image of $\pi_{1}\left(U_{i}, x\right) \rightarrow \pi_{1}(M, x)$ is amenable; (2) for all $\sigma \subseteq I$ with $|\sigma| \geq n+1$, the intersection $U_{\sigma}=\bigcap_{i \in \sigma} U_{i}$ is empty; then: $\|M\|=0$.

A new proof approach: We obtain a diagram of cochain complexes:

Bounded cohomology (II): The Vanishing Theorem

We have seen: M occ n-manifold ($n>0$) with $\pi_{1} M$ amenable, then it follows $H_{b}^{k}(M ; \mathbb{R}) \cong 0$ for $k>0$ and so $\|M\|=0$. But there is a stronger vanishing result:

Theorem (Gromov's Vanishing Theorem)
Suppose that M admits an open cover $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ with the properties:
(1) for all $i \in I$ and $x \in U_{i}$, the image of $\pi_{1}\left(U_{i}, x\right) \rightarrow \pi_{1}(M, x)$ is amenable;
(2) for all $\sigma \subseteq I$ with $|\sigma| \geq n+1$, the intersection $U_{\sigma}=\bigcap_{i \in \sigma} U_{i}$ is empty; then: $\|M\|=0$.

A new proof approach: Taking homotopy limits and using excision:

By (2), the homotopy limits are indexed by a poset of dimension $<n$. Hence, the bottom left cochain complex is concentrated in degrees $<n_{\mathscr{Q}}, \square$

Bounded cohomology (II): The Vanishing Theorem

We have seen: M occ n-manifold ($n>0$) with $\pi_{1} M$ amenable, then it follows $H_{b}^{k}(M ; \mathbb{R}) \cong 0$ for $k>0$ and so $\|M\|=0$. But there is a stronger vanishing result:

Theorem (Gromov's Vanishing Theorem)

Suppose that M admits an open cover $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ with the properties:
(1) for all $i \in I$ and $x \in U_{i}$, the image of $\pi_{1}\left(U_{i}, x\right) \rightarrow \pi_{1}(M, x)$ is amenable;
(2) for all $\sigma \subseteq I$ with $|\sigma| \geq n+1$, the intersection $U_{\sigma}=\bigcap_{i \in \sigma} U_{i}$ is empty; then: $\|M\|=0$.

A new proof approach (R. '21): yields factorizations of the comparison map c_{X} of cochain complexes for general homotopy colimit decompositions of X,

$$
\operatorname{hocolim}_{I} X_{i} \simeq X,
$$

equipped with factorizations $\left(X_{i} \rightarrow Y_{i} \rightarrow X\right)$ through spaces Y_{i} with vanishing conditions on their bounded cohomology groups.

Simplicial volume and the Euler characteristic

Simplicial volume and the Euler characteristic

Recall (Gromov's question): M occ aspherical n-manifold. Does the implication:

$$
\begin{equation*}
\|M\|=0 \Rightarrow \chi(M)=0 \text { hold? } \tag{GromovQ}
\end{equation*}
$$

Simplicial volume and the Euler characteristic

Recall (Gromov's question): M occ aspherical n-manifold. Does the implication:

$$
\begin{equation*}
\|M\|=0 \Rightarrow \chi(M)=0 \text { hold? } \tag{GromovQ}
\end{equation*}
$$

- (Integral simplicial volume) M occ n-manifold

$$
\begin{aligned}
\|M\|_{\mathbb{Z}} & =\inf \left\{\|\sigma\|_{1} \mid \sigma \text { fundamental } \mathbb{Z} \text {-cycle of } M\right\} \geq 1 \\
& \geq\|M\|
\end{aligned}
$$

Then (by Poincaré duality): $|\chi(M)| \leq(n+1) \cdot\|M\|_{\mathbb{Z}}$.

Simplicial volume and the Euler characteristic

Recall (Gromov's question): M occ aspherical n-manifold. Does the implication:

$$
\begin{equation*}
\|M\|=0 \Rightarrow \chi(M)=0 \text { hold? } \tag{GromovQ}
\end{equation*}
$$

- (Integral simplicial volume) M occ n-manifold

$$
\begin{aligned}
\|M\|_{\mathbb{Z}} & =\inf \left\{\|\sigma\|_{1} \mid \sigma \text { fundamental } \mathbb{Z} \text {-cycle of } M\right\} \geq 1 \\
& \geq\|M\|
\end{aligned}
$$

Then (by Poincaré duality): $|\chi(M)| \leq(n+1) \cdot\|M\|_{\mathbb{Z}}$.

- (Generalized Milnor-Wood inequalities) M occ smooth n-manifold and $(\pi: T M \rightarrow M)$ admits a flat structure. Then:

$$
|\chi(M)| \leq \frac{\|M\|}{2^{n}} \text { and the Euler class } e(M) \text { is bounded. }
$$

(Ivanov-Turaev, Bucher-Monod, ...)

Simplicial volume and the Euler characteristic

Recall (Gromov's question): M occ aspherical n-manifold. Does the implication:

$$
\begin{equation*}
\|M\|=0 \Rightarrow \chi(M)=0 \text { hold? } \tag{GromovQ}
\end{equation*}
$$

- (Integral simplicial volume) M occ n-manifold

$$
\begin{aligned}
\|M\|_{\mathbb{Z}} & =\inf \left\{\|\sigma\|_{1} \mid \sigma \text { fundamental } \mathbb{Z} \text {-cycle of } \mathrm{M}\right\} \geq 1 \\
& \geq\|M\|
\end{aligned}
$$

Then (by Poincaré duality): $|\chi(M)| \leq(n+1) \cdot\|M\|_{\mathbb{Z}}$.

- (Generalized Milnor-Wood inequalities) M occ smooth n-manifold and $(\pi: T M \rightarrow M)$ admits a flat structure. Then:

$$
|\chi(M)| \leq \frac{\|M\|}{2^{n}} \text { and the Euler class } e(M) \text { is bounded. }
$$

(Ivanov-Turaev, Bucher-Monod, ...)
Remark: If M admits a flat metric, then: $\|M\|=0=\chi(M)$.

Simplicial volume and the Euler characteristic (ctd.)

Simplicial volume and the Euler characteristic (ctd.)

Recall (Gromov's question): M oriented closed aspherical n-manifold. Does the implication:

$$
\begin{equation*}
\|M\|=0 \Rightarrow \chi(M)=0 \tag{GromovQ}
\end{equation*}
$$

hold?

- (Boundedness of the Euler class) M occ smooth n-manifold. When is the Euler class e(M) bounded?

Simplicial volume and the Euler characteristic (ctd.)

Recall (Gromov's question): M oriented closed aspherical n-manifold. Does the implication:

$$
\begin{equation*}
\|M\|=0 \Rightarrow \chi(M)=0 \tag{GromovQ}
\end{equation*}
$$

hold?

- (Boundedness of the Euler class) M occ smooth n-manifold. When is the Euler class e(M) bounded?

Proposition (Löh-Moraschini-R.)
(GromovQ) is equivalent to:
$e(M)$ is bounded.

Simplicial volume and the Euler characteristic (ctd.)

Recall (Gromov's question): M oriented closed aspherical n-manifold. Does the implication:

$$
\begin{equation*}
\|M\|=0 \Rightarrow \chi(M)=0 \tag{GromovQ}
\end{equation*}
$$

hold?

- (Boundedness of the Euler class) M occ smooth n-manifold. When is the Euler class e(M) bounded?

Proposition (Löh-Moraschini-R.)
(GromovQ) is equivalent to:
$e(M)$ is bounded.

- (Amenability) M occ n-manifold $n \geq 1$ with $\pi_{1}(M)$ amenable. Then:
- (Gromov) $\|M\|=0$.
- (Sauer) If M is also aspherical, then $\chi(M)=0$.

Comparison of invariance properties

Comparison of invariance properties

- (GromovQ) fails for non-aspherical manifolds, e.g. $\left\|S^{2 n}\right\|=0 \neq \chi\left(S^{2 n}\right)$.

Comparison of invariance properties

- (GromovQ) fails for non-aspherical manifolds, e.g. $\left\|S^{2 n}\right\|=0 \neq \chi\left(S^{2 n}\right)$. However:
- If $f: M \rightarrow N$ is an $H_{*}(-; \mathbb{R})$-equivalence, then we have:

$$
\chi(M)=\chi(N) \text { and }(\|M\|=0 \Longrightarrow\|N\|=0) .
$$

Comparison of invariance properties

- (GromovQ) fails for non-aspherical manifolds, e.g. $\left\|S^{2 n}\right\|=0 \neq \chi\left(S^{2 n}\right)$. However:
- If $f: M \rightarrow N$ is an $H_{*}(-; \mathbb{R})$-equivalence, then we have:

$$
\chi(M)=\chi(N) \text { and }(\|M\|=0 \Longrightarrow\|N\|=0)
$$

Hence: if (GromovQ) holds for aspherical manifolds, then it must hold also for certain occ manifolds which are H_{*}-equivalent to aspherical manifolds!

Comparison of invariance properties

- (GromovQ) fails for non-aspherical manifolds, e.g. $\left\|S^{2 n}\right\|=0 \neq \chi\left(S^{2 n}\right)$. However:
- If $f: M \rightarrow N$ is an $H_{*}(-; \mathbb{R})$-equivalence, then we have:

$$
\chi(M)=\chi(N) \text { and }(\|M\|=0 \Longrightarrow\|N\|=0) .
$$

Hence: if (GromovQ) holds for aspherical manifolds, then it must hold also for certain occ manifolds which are H_{*}-equivalent to aspherical manifolds!

Theorem (Löh-Moraschini-R.)
Let $n \in \mathbb{N}_{\geq 2}$ be even.
(1) There exist aspherical spaces X with an $H_{*}(-; \mathbb{Z})$-equivalence $X \rightarrow M$ to an occ n-manifold M such that $\|X\|=0$ and $\chi(X) \neq 0$.
(2) There exist occ n-manifolds M with an $H_{*}(-; \mathbb{Z})$-equivalence $X \rightarrow M$ from an aspherical space X such that $\|M\|=0$ and $\chi(M) \neq 0$.

Additivity of the simplicial volume

Additivity of the simplicial volume

- The Euler characteristic is the universal additive homotopy invariant. For compact manifolds $(M, \partial M)$ and $(N, \partial N)$ with $\partial M=\partial N$, we have:

$$
\chi\left(M \cup_{\partial} N\right)=\chi(M)+\chi(N)-\chi(\partial M) .
$$

Additivity of the simplicial volume

- What about the simplicial volume?

Additivity of the simplicial volume

- There is additivity in a restricted sense: For oriented compact n-manifolds $(M, \partial M)$ and $(N, \partial N)$ with $\partial M=\partial N$ such that:
$\pi_{1} \partial M \cong \pi_{1} \partial N$ is amenable and $\partial M \subset M, \partial N \subset N$ are π_{1}-injective we have:

$$
\left\|M \cup_{\partial} N\right\|=\|M, \partial M\|+\|N, \partial N\| .
$$

Additivity of the simplicial volume

- There is additivity in a restricted sense: For oriented compact n-manifolds $(M, \partial M)$ and $(N, \partial N)$ with $\partial M=\partial N$ such that:
$\pi_{1} \partial M \cong \pi_{1} \partial N$ is amenable and $\partial M \subset M, \partial N \subset N$ are π_{1}-injective we have:

$$
\left\|M \cup_{\partial} N\right\|=\|M, \partial M\|+\|N, \partial N\| .
$$

- Example: $\|M \# N\|=\|M\|+\|N\|$ if $n \geq 3$. (This fails for $n=2!$)

Additivity of the simplicial volume

- There is additivity in a restricted sense: For oriented compact n-manifolds $(M, \partial M)$ and $(N, \partial N)$ with $\partial M=\partial N$ such that:
$\pi_{1} \partial M \cong \pi_{1} \partial N$ is amenable and $\partial M \subset M, \partial N \subset N$ are π_{1}-injective we have:

$$
\left\|M \cup_{\partial} N\right\|=\|M, \partial M\|+\|N, \partial N\| .
$$

- Example: $\|M \# N\|=\|M\|+\|N\|$ if $n \geq 3$. (This fails for $n=2$!) On the other hand, $\chi(M \# N)=\chi(M)+\chi(N)-\chi\left(S^{n}\right)$.

Additivity of the simplicial volume

- There is additivity in a restricted sense: For oriented compact n-manifolds $(M, \partial M)$ and $(N, \partial N)$ with $\partial M=\partial N$ such that:
$\pi_{1} \partial M \cong \pi_{1} \partial N$ is amenable and $\partial M \subset M, \partial N \subset N$ are π_{1}-injective we have:

$$
\left\|M \cup_{\partial} N\right\|=\|M, \partial M\|+\|N, \partial N\| .
$$

- Example: $\|M \# N\|=\|M\|+\|N\|$ if $n \geq 3$. (This fails for $n=2$!) On the other hand, $\chi(M \# N)=\chi(M)+\chi(N)-\chi\left(S^{n}\right)$. But the connected sum of aspherical manifolds isn't aspherical for $n \geq 3$...

Additivity of the simplicial volume

- There is additivity in a restricted sense: For oriented compact n-manifolds $(M, \partial M)$ and $(N, \partial N)$ with $\partial M=\partial N$ such that:
$\pi_{1} \partial M \cong \pi_{1} \partial N$ is amenable and $\partial M \subset M, \partial N \subset N$ are π_{1}-injective we have:

$$
\left\|M \cup_{\partial} N\right\|=\|M, \partial M\|+\|N, \partial N\| .
$$

- Example: $\|M \# N\|=\|M\|+\|N\|$ if $n \geq 3$. (This fails for $n=2$!) On the other hand, $\chi(M \# N)=\chi(M)+\chi(N)-\chi\left(S^{n}\right)$. But the connected sum of aspherical manifolds isn't aspherical for $n \geq 3 \ldots$
- (Gromov's question for compact manifolds) ($M, \partial M$) oriented compact n-manifold such that M and ∂M are aspherical and $\partial M \subset M$ is π_{1}-injective. Does the following implication hold?

$$
\begin{equation*}
\|M, \partial M\|=0 \Longrightarrow \chi(M, \partial M)=0 \tag{}
\end{equation*}
$$

Additivity of the simplicial volume

- There is additivity in a restricted sense: For oriented compact n-manifolds $(M, \partial M)$ and $(N, \partial N)$ with $\partial M=\partial N$ such that:
$\pi_{1} \partial M \cong \pi_{1} \partial N$ is amenable and $\partial M \subset M, \partial N \subset N$ are π_{1}-injective we have:

$$
\left\|M \cup_{\partial} N\right\|=\|M, \partial M\|+\|N, \partial N\| .
$$

- Example: $\|M \# N\|=\|M\|+\|N\|$ if $n \geq 3$. (This fails for $n=2$!) On the other hand, $\chi(M \# N)=\chi(M)+\chi(N)-\chi\left(S^{n}\right)$. But the connected sum of aspherical manifolds isn't aspherical for $n \geq 3 \ldots$
- (Gromov's question for compact manifolds) ($M, \partial M$) oriented compact n-manifold such that M and ∂M are aspherical and $\partial M \subset M$ is π_{1}-injective. Does the following implication hold?

$$
\|M, \partial M\|=0 \Longrightarrow \chi(M, \partial M)=0
$$

- Proposition. (Löh-Moraschini-R.) $($ GromovQ $) \Longrightarrow\left(G r o m o v Q_{\partial}\right)$.

Simplicial volume and (invertible) TQFTs

Simplicial volume and (invertible) TQFTs

- $\mathbf{C o b}_{d}$ oriented d-dimensional cobordism (homotopy) category:
- Objects: M oriented closed ($d-1$)-manifold (one from each diffeomorphism class)
- Morphisms: (W; M, N) oriented compact d-dimensional cobordism (up to diffeomorphism)

Simplicial volume and (invertible) TQFTs

- $\mathbf{C o b}_{d}$ oriented d-dimensional cobordism (homotopy) category:
- Objects: M oriented closed ($d-1$)-manifold (one from each diffeomorphism class)
- Morphisms: (W; M, N) oriented compact d-dimensional cobordism (up to diffeomorphism)
The additivity property of the Euler characteristic yields a (symmetric monoidal) functor:

$$
\chi: \mathbf{C o b}_{d} \rightarrow \mathbb{Z},(W ; M, N) \mapsto \chi(W, M)
$$

Simplicial volume and (invertible) TQFTs

- $\mathbf{C o b}_{d}$ oriented d-dimensional cobordism (homotopy) category:
- Objects: M oriented closed $(d-1)$-manifold (one from each diffeomorphism class)
- Morphisms: (W; M, N) oriented compact d-dimensional cobordism (up to diffeomorphism)
The additivity property of the Euler characteristic yields a (symmetric monoidal) functor:

$$
\chi: \mathbf{C o b}_{d} \rightarrow \mathbb{Z},(W ; M, N) \mapsto \chi(W, M)
$$

- $\mathbf{C o b}_{d}^{\mathrm{Am}} \subseteq \mathbf{C o b}_{d} d$-dimensional amenable cobordism subcategory:
- Objects: M oriented closed ($d-1$)-manifold with $\pi_{1} M$ amenable (one from each diffeomorphism class)
- Morphisms: ($W ; M, N$) oriented compact d-dimensional cobordism with

$$
M \hookrightarrow W \hookleftarrow N
$$

π_{1}-injective (up to diffeomorphism)

Simplicial volume and (invertible) TQFTs

- $\mathbf{C o b}_{d}$ oriented d-dimensional cobordism (homotopy) category:
- Objects: M oriented closed ($d-1$)-manifold (one from each diffeomorphism class)
- Morphisms: (W; M, N) oriented compact d-dimensional cobordism (up to diffeomorphism)
The additivity property of the Euler characteristic yields a (symmetric monoidal) functor:

$$
\chi: \mathbf{C o b}_{d} \rightarrow \mathbb{Z},(W ; M, N) \mapsto \chi(W, M)
$$

- $\mathbf{C o b}_{d}^{\mathrm{Am}} \subseteq \mathbf{C o b}_{d} d$-dimensional amenable cobordism subcategory:
- Objects: M oriented closed $(d-1)$-manifold with $\pi_{1} M$ amenable (one from each diffeomorphism class)
- Morphisms: $(W ; M, N)$ oriented compact d-dimensional cobordism with

$$
M \hookrightarrow W \hookleftarrow N
$$

π_{1}-injective (up to diffeomorphism)
The additivity property of the simplicial volume yields a (symmetric monoidal) functor:

$$
\|-\|: \mathbf{C o b}_{d}^{\mathrm{Am}} \rightarrow \mathbb{R},(W ; M, N) \mapsto\|W, \partial W\|
$$

Simplicial volume and (invertible) TQFTs (ctd.)

Simplicial volume and (invertible) TQFTs (ctd.)

Recall: for any category \mathbf{C} and object $x \in \mathbf{C}$, we have maps:

$$
\mathbf{C}(x, x) \rightarrow \Omega_{x} B \mathbf{C} \rightarrow \pi_{1}(B \mathbf{C}, x)
$$

Simplicial volume and (invertible) TQFTs (ctd.)

Recall: for any category \mathbf{C} and object $x \in \mathbf{C}$, we have maps:

$$
\mathbf{C}(x, x) \rightarrow \Omega_{x} B \mathbf{C} \rightarrow \pi_{1}(B \mathbf{C}, x)
$$

and for any functor $F: \mathbf{C} \rightarrow \mathbb{R}$, there is an induced homomorphism:

$$
\pi_{1}(B \mathbf{C}, x) \rightarrow \pi_{1}(\Omega B \mathbb{R}, *) \cong \mathbb{R}
$$

Simplicial volume and (invertible) TQFTs (ctd.)

Recall: for any category \mathbf{C} and object $x \in \mathbf{C}$, we have maps:

$$
\mathbf{C}(x, x) \rightarrow \Omega_{x} B \mathbf{C} \rightarrow \pi_{1}(B \mathbf{C}, x)
$$

and for any functor $F: \mathbf{C} \rightarrow \mathbb{R}$, there is an induced homomorphism:

$$
\pi_{1}(B \mathbf{C}, x) \rightarrow \pi_{1}(\Omega B \mathbb{R}, *) \cong \mathbb{R}
$$

Corollary (Löh-Moraschini-R.)
$\pi_{1}\left(B \mathbf{C o b}_{4}^{\mathrm{Am}},[\varnothing]\right)$ is not finitely generated.

Simplicial volume and (invertible) TQFTs (ctd.)

Recall: for any category \mathbf{C} and object $x \in \mathbf{C}$, we have maps:

$$
\mathbf{C}(x, x) \rightarrow \Omega_{x} B \mathbf{C} \rightarrow \pi_{1}(B \mathbf{C}, x)
$$

and for any functor $F: \mathbf{C} \rightarrow \mathbb{R}$, there is an induced homomorphism:

$$
\pi_{1}(B \mathbf{C}, x) \rightarrow \pi_{1}(\Omega B \mathbb{R}, *) \cong \mathbb{R}
$$

Corollary (Löh-Moraschini-R.)
$\pi_{1}\left(B \mathbf{C o b}_{4}^{\mathrm{Am}},[\varnothing]\right)$ is not finitely generated.
Proof. The image of $\pi_{1}\left(B \mathbf{C o b}_{4}^{\mathrm{Am}},[\varnothing]\right)$ in \mathbb{R} contains the simplicial volumes of all occ 4-manifolds. The simplicial volumes of occ 4-manifolds contain an infinite set of values which are linearly independent over \mathbb{Q} (Heuer-Löh). \square

Simplicial volume and (invertible) TQFTs (ctd.)

Recall: for any category \mathbf{C} and object $x \in \mathbf{C}$, we have maps:

$$
\mathbf{C}(x, x) \rightarrow \Omega_{x} B \mathbf{C} \rightarrow \pi_{1}(B \mathbf{C}, x)
$$

and for any functor $F: \mathbf{C} \rightarrow \mathbb{R}$, there is an induced homomorphism:

$$
\pi_{1}(B \mathbf{C}, x) \rightarrow \pi_{1}(\Omega B \mathbb{R}, *) \cong \mathbb{R}
$$

Corollary (Löh-Moraschini-R.)
$\pi_{1}\left(B \mathbf{C o b}_{4}^{\mathrm{Am}},[\varnothing]\right)$ is not finitely generated.
Proof. The image of $\pi_{1}\left(B \mathbf{C o b}_{4}^{\mathrm{Am}},[\varnothing]\right)$ in \mathbb{R} contains the simplicial volumes of all occ 4-manifolds. The simplicial volumes of occ 4-manifolds contain an infinite set of values which are linearly independent over \mathbb{Q} (Heuer-Löh).

Proposition (Löh-Moraschini-R.)
There is no functor $F: \mathbf{C o b}_{d} \rightarrow \mathbb{R}$ which agrees with the simplicial volume on closed d-manifolds (viewed as endomorphisms of \varnothing).

Simplicial volume and (invertible) TQFTs (ctd.)

Proposition (Löh-Moraschini-R.)

There is no functor $F: \mathbf{C o b}_{d} \rightarrow \mathbb{R}$ which agrees with the simplicial volume on closed d-manifolds (viewed as endomorphisms of \varnothing).

Proof.

Simplicial volume and (invertible) TQFTs (ctd.)

Proposition (Löh-Moraschini-R.)

There is no functor $F: \mathbf{C o b}_{d} \rightarrow \mathbb{R}$ which agrees with the simplicial volume on closed d-manifolds (viewed as endomorphisms of \varnothing).

Proof.

The existence of such $F: \mathbf{C o b}_{d} \rightarrow \mathbb{R}$ would imply that the simplicial volume of occ d-manifolds $\|-\|: \mathbf{C o b}_{d}(\varnothing, \varnothing) \rightarrow \mathbb{R}$ factors through a homomorphism

$$
\pi_{1}\left(B \mathbf{C o b}_{d},[\varnothing]\right) \rightarrow \mathbb{R}
$$

Simplicial volume and (invertible) TQFTs (ctd.)

Proposition (Löh-Moraschini-R.)

There is no functor $F: \mathbf{C o b}_{d} \rightarrow \mathbb{R}$ which agrees with the simplicial volume on closed d-manifolds (viewed as endomorphisms of \varnothing).

Proof.

The existence of such $F: \mathbf{C o b}_{d} \rightarrow \mathbb{R}$ would imply that the simplicial volume of occ d-manifolds $\|-\|: \mathbf{C o b}_{d}(\varnothing, \varnothing) \rightarrow \mathbb{R}$ factors through a homomorphism

$$
\pi_{1}\left(B \mathbf{C o b}_{d},[\varnothing]\right) \rightarrow \mathbb{R}
$$

From the identification of the homotopy type of the (topologized) cobordism category [GMTW], there is a short exact sequence:

$$
0 \rightarrow \text { (cyclic group) } \xrightarrow{[1] \mapsto\left[S^{d}\right]} \pi_{1}\left(B \mathbf{C o b}_{d},[\varnothing]\right) \rightarrow \Omega_{d}^{S O} \rightarrow 0
$$

where the middle term is the Reinhart vector field bordism group.

Simplicial volume and (invertible) TQFTs (ctd.)

Proposition (Löh-Moraschini-R.)

There is no functor $F: \mathbf{C o b}_{d} \rightarrow \mathbb{R}$ which agrees with the simplicial volume on closed d-manifolds (viewed as endomorphisms of \varnothing).

Proof.

The existence of such $F: \mathbf{C o b}_{d} \rightarrow \mathbb{R}$ would imply that the simplicial volume of occ d-manifolds $\|-\|: \mathbf{C o b}_{d}(\varnothing, \varnothing) \rightarrow \mathbb{R}$ factors through a homomorphism

$$
\pi_{1}\left(B \mathbf{C o b}_{d},[\varnothing]\right) \rightarrow \mathbb{R}
$$

From the identification of the homotopy type of the (topologized) cobordism category [GMTW], there is a short exact sequence:

$$
0 \rightarrow \text { (cyclic group) } \xrightarrow{[1] \mapsto\left[S^{d}\right]} \pi_{1}\left(B \mathbf{C o b}_{d},[\varnothing]\right) \rightarrow \Omega_{d}^{S O} \rightarrow 0
$$

where the middle term is the Reinhart vector field bordism group. As $\left\|S^{d}\right\|=0$, the homomorphism would factor through the oriented bordism group $\Omega_{d}^{S O}$.

Simplicial volume and (invertible) TQFTs (ctd.)

Proposition (Löh-Moraschini-R.)

There is no functor $F: \mathbf{C o b}_{d} \rightarrow \mathbb{R}$ which agrees with the simplicial volume on closed d-manifolds (viewed as endomorphisms of \varnothing).

Proof.

The existence of such $F: \mathbf{C o b}_{d} \rightarrow \mathbb{R}$ would imply that the simplicial volume of occ d-manifolds $\|-\|: \mathbf{C o b}_{d}(\varnothing, \varnothing) \rightarrow \mathbb{R}$ factors through a homomorphism

$$
\pi_{1}\left(B \mathbf{C o b}_{d},[\varnothing]\right) \rightarrow \mathbb{R}
$$

From the identification of the homotopy type of the (topologized) cobordism category [GMTW], there is a short exact sequence:

$$
0 \rightarrow \text { (cyclic group) } \xrightarrow{[1] \mapsto\left[S^{d}\right]} \pi_{1}\left(B \mathbf{C o b}_{d},[\varnothing]\right) \rightarrow \Omega_{d}^{S O} \rightarrow 0
$$

where the middle term is the Reinhart vector field bordism group. As $\left\|S^{d}\right\|=0$, the homomorphism would factor through the oriented bordism group $\Omega_{d}^{S O}$. But the simplicial volume isn't bordism invariant.

P.S. Simplicial volume of products

P.S. Simplicial volume of products

- M occ n-manifold, $(N, \partial N)$ oriented compact m-manifold, then:

$$
\|M\| \cdot\|N, \partial N\| \leq\|M \times N, M \times \partial N\| \leq\binom{ n+m}{n}\|M\| \cdot\|N, \partial N\| .
$$

P.S. Simplicial volume of products

- M occ n-manifold, $(N, \partial N)$ oriented compact m-manifold, then:

$$
\|M\| \cdot\|N, \partial N\| \leq\|M \times N, M \times \partial N\| \leq\binom{ n+m}{n}\|M\| \cdot\|N, \partial N\| .
$$

- Question: Given oriented compact n-manifolds $(M, \partial M)$ and ($N, \partial N$) with non-empty connected boundary (...perhaps with vanishing relative simplicial volume?). Does it follow that

$$
\|M \times N, \partial\|=0 ?
$$

This could lead to counterexamples to (GromovQ)...

P.S. Simplicial volume of products

- M occ n-manifold, $(N, \partial N)$ oriented compact m-manifold, then:

$$
\|M\| \cdot\|N, \partial N\| \leq\|M \times N, M \times \partial N\| \leq\binom{ n+m}{n}\|M\| \cdot\|N, \partial N\| .
$$

- Question: Given oriented compact n-manifolds $(M, \partial M)$ and $(N, \partial N)$ with non-empty connected boundary (...perhaps with vanishing relative simplicial volume?). Does it follow that

$$
\|M \times N, \partial\|=0 ?
$$

This could lead to counterexamples to (GromovQ)...
Remark: this property holds for products of ≥ 3 factors (Gromov). (But $\partial\left(M_{1} \times M_{2} \times M_{3}\right)$ is not aspherical, even if M_{i} and ∂M_{i} are aspherical and $\partial M_{i} \subset M_{i}$ are π_{1}-injective...)

