
ACCESSIBLE ∞-CATEGORIES

NIKLAS KIPP AND GEORGE RAPTIS

1. Preliminaries

1.1. Locally small ∞-categories.

Definition 1.1.1. An ∞-category C is called locally small if for any small subset
S ⊂ C0 of objects in C, the full subcategory generated by S is essentially small.

Proposition 1.1.2. Let C and D be ∞-categories such that C is essentially small
and D is locally small. Then Fun(C,D) is locally small as well. In particular, the
∞-category of presheaves P(C) on an essentially small ∞-category C is locally small.

Proof. See [2, Example 5.4.1.8]. �

Remark 1.1.3. The ∞-category Indκ(C) (as a full subcategory of P(C)) is locally
small if C is essentially small.

1.2. Retracts and Idempotents.

Definition 1.2.1. Let Idem denote the nerve of the monoid {id, e} with multiplica-
tion law e · e = e. Then we refer to Fun(Idem, C) as the ∞-category of idempotents
in C. A discussion about idempotents can be found in [2, 4.4.5]. This ∞-category is
essentially small if C is essentially small.

Remark 1.2.2. Note that for an essentially small ∞-category C, any retract of a
representable presheaf (in Indκ(C)) gives rise to an idempotent p : Idem→ C. We can
recover the retract by taking the colimit of p : Idem → C ⊆ Indκ(C) (see [2, Corollary
4.4.5.14] and [2, Remark 5.3.1.9]). Any such colimit is κ-compact in Indκ(C) because
representable presheaves in Indκ(C) are κ-compact and κ-compact objects are closed
under retracts. Thus, we have a functor Fun(Idem, C) → Indκ(C)κ defined by the
colimit.

2. Accessible ∞-categories

2.1. Basic definitions and properties.

Definition 2.1.1. Let κ be a regular cardinal. An ∞-category C is called κ-
accessible if there exists an essentially small ∞-category C′ and an equivalence of
∞-categories

Indκ(C′)
∼−→ C.

C is called accessible if there exists a regular cardinal κ such that C is κ-accessible.

The following proposition proves some equivalent characterizations of accessible
∞-categories.

Proposition 2.1.2. Let C be an ∞-category and κ a regular cardinal. Then the
following are equivalent.
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(1) C is κ-accessible.
(2) C admits κ-filtered colimits and the full subcategory Cκ of κ-compact objects

is essentially small and generates C under κ-filtered colimits.
(3) C admits κ-filtered colimits and there exists a full and essentially small

subcategory C′ of κ-compact objects, which generates C under κ-filtered
colimits.

Proof. See [2, Proposition 5.4.2.2].
(1) ⇒ (2) : C admits κ-filtered colimits by [2, Proposition 5.3.5.3]. We know that
there is a small ∞-category C′ such that Indκ(C′) ' C. We claim that Indκ(C′)κ is
essentially small: any f ∈ Indκ(C′)κ classifies a right fibration p : C̃′(f) → C′ where
C̃′(f) is κ-filtered, and f can be identified with the colimit of the canonical diagram

C̃′(f) C′ Indκ(C′).
p j

Therefore, choosing a representative of the 0-simplex:

∆0 map(f, f) ' map(f, colim j ◦ p) ' colimmap(f, j ◦ p)
idf

shows that f is a retract of some representable presheaf j(c), c ∈ C′. Thus the claim
follows from 1.2.2 and 1.2.1.

It remains to show that Indκ(C′)κ generates Indκ(C′) under κ-filtered colimits.
But the Yoneda embedding factors as:

C′ Indκ(C′)κ Indκ(C′)
j

So the claim follows since C′ already generates Indκ(C′) under κ-filtered colimits.
(2) ⇒ (3): obvious.
(3) ⇒ (1) : The assumptions give exactly a factorization of the form

C′ Cκ C

Indκ(C′)

j

such that the upper composition is fully faithful and C′ generates C under κ-filtered
colimits. Then we can apply [2, Proposition 5.3.5.11.(2)] to conclude that the
canonical extension of this functor along j is an equivalence. �

Given a regular cardinal κ, we define a category Accκ enriched in Kan complexes
as follows. The objects of Accκ are given by κ-accessible ∞-categories. The mapping
space from C to D in Accκ is the maximal ∞-groupoid of the full subcategory
Funκ(C,D) ⊆ Fun(C,D) that is spanned by those functors which preserve κ-filtered
colimits and κ-compact objects. We refer to the associated ∞-category N∆(Accκ)
as the ∞-category of κ-accessible ∞-categories. We also denote by Cat∞ the
∞-category of essentially small ∞-categories.

Proposition 2.1.3. The functor
N∆(Accκ) Cat∞

induced by the functor (between enriched categories) which assigns to a κ-accessible
∞-category C the ∞-category of κ-compact objects Cκ, is fully faithful.
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Proof. See [2, Proposition 5.4.2.15].
There is an equivalence

Funκ(Indκ(Cκ),D) ' Fun(Cκ,Dκ)

as a consequence of the universal property of Indκ(Cκ) [2, Proposition 5.3.5.10].
This restricts to a homotopy equivalence of the associated ∞-groupoids. �

Remark 2.1.4. The essential image of the fully faithful functor in Proposition 2.1.3
is the ∞-category of essentially small idempotent complete ∞-categories. (See [2,
Proposition 5.4.2.15].) Moreover, the functor Indκ(−) : Cat∞ → N∆(Accκ) exhibits
N∆(Accκ) as a localization of Cat∞ [2, Proposition 5.4.2.17]. As a consequence,
N∆(Accκ) inherits small limits from Cat∞. However, these do not agree with the
limits of the underlying ∞-categories in general. We will return to the question of
the existence of pullbacks of accessible ∞-categories in Section 3.

2.2. Raising the rank of accessibility.

Notation 2.2.1. Let κ and τ be regular cardinals. We write κ ≺≺ τ if for any
cardinals κ0 ≺ κ and τ0 ≺ τ , we have τκ0

0 ≺ τ .

Lemma 2.2.2. Let κ and τ be regular cardinals such that κ ≺≺ τ . Then any
κ-filtered partially ordered set J can be written as a union of subsets which are
κ-filtered and τ -small. Moreover the partially ordered set given by those subsets is
τ -filtered.

Proof. See [2, Lemma 5.4.2.8]. �

Construction 2.2.3. Let f : N(J ) → C be a diagram where J is a κ-directed
partially ordered set. Using Lemma 2.2.2, given any cardinal κ ≺≺ τ , there is a τ -
filtered partially ordered set I which consists of subsets of J which are κ-filtered and
τ -small. This decomposition of J can be used to define a functor F : I → sSet/N(J ),
which sends a subset (S ⊆ J ) in I to the map between the nerves induced by the
inclusion. Assuming that C admits κ-filtered colimits, we may find for any subset
(S ⊆ J ) of I a colimit cone of the respective diagram:

N(S) → N(J ) → C.

Furthermore, if the original diagram f consists of τ -compact objects, these colimits
will remain τ -compact (because τ -compact objects are closed under τ -small colimits
– see the proof of Proposition 2.2.4 below). Using the method explained in [2,
Proposition 4.2.3.4] combined with [2, Proposition 4.2.3.8], we can assemble these
colimit cones to a diagram N(I) → C which has the same colimit as f . In other
words, if κ ≺≺ τ , then we can rewrite any κ-directed colimit of κ-compact (or
τ -compact) objects as a τ -directed colimit of τ -compact objects which are obtained
as κ-filtered τ -small colimits of κ-compact (or τ -compact) objects.

Proposition 2.2.4. Let C be a κ-accessible ∞-category. Then C is τ -accessible for
any κ ≺≺ τ .

Proof. See [2, Proposition 5.4.2.9].
We will use Proposition 2.1.2(3). Our candidate for an essentially small generating
subcategory C′ will be the full subcategory spanned by colimits of diagrams in Cκ

which are τ -small and κ-filtered.
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First we observe that the collection of τ -small simplicial sets is indeed a set. So
the collection of equivalence classes of τ -small diagrams in Cκ is a set as well. Since
C′ is locally small, we conclude that C′ is indeed essentially small.

Then we claim that C′ consists of τ -compact objects. By definition, an object
c′ ∈ C′ can be written as c′ ' colimK p, where p : K → Cκ is a τ -small diagram.
Then, for any τ -filtered diagram q : S → C, using that τ -small limits commute with
τ -filtered colimits and that any κ-compact object is also τ -compact, we obtain
equivalences:

colimS map(c′, q(−)) ' colimS limK map(p(−), q(−)) '
limK colimS map(p(−), q(−)) ' limK map(p(−), colimS q) '

' map(c′, colimS q).

It remains to show that C′ generates C under τ -filtered colimits. This is a consequence
of Construction 2.2.3. �

2.3. Uniformization. The following proposition generalizes [1, 2.19] to accessible
∞-categories.

Proposition 2.3.1. Let p : C → D be a κ-accessible functor between κ-accessible
∞-categories. Then there exists a cardinal κ ≺≺ τ such that p sends τ -compact
objects in C to τ -compact objects in D.

Proof. Since D ' Indκ(D′) for some small ∞-category D′, any object d ∈ D can
be expressed as the colimit of a (small) κ-filtered diagram in D with values in
D′. In particular, d ∈ D is τ -compact for some τ (for example, we may choose a
regular cardinal τ � κ for which the given κ-filtered ∞-category is τ -small). The
full subcategory of κ-compact objects Cκ ⊆ C is (essentially) small, therefore we
may find τ �� κ such that p(c) is τ -compact for every κ-compact object c ∈ C (for
example, we may choose τ �� κ to be greater than the cardinalities of the κ-filtered
∞-categories, which are associated, as indicated above, to the objects in the image
of Cκ under p). Then we conclude that p sends κ-compact objects to τ -compact
objects.

Construction 2.2.3 together with the last part of Proposition 2.1.2(1) ⇒ (2) show
that any object c ∈ Cτ is a retract of a κ-filtered and τ -small colimit in Cκ. Since p
commutes with κ-filtered colimits, and τ -small colimits of τ -compact objects are
again τ -compact, the image of this colimit under p is also τ -compact in D. Since
τ -compact objects are stable under retracts, it follows that τ has the required
properties. �

3. Pullbacks of Accessible ∞-categories

The main goal of this section is to prove that the ∞-category of accessible ∞-
categories admits pullbacks and that these agree with the pullbacks of underlying
∞-categories (= homotopy pullbacks of ∞-categories in the sense of the Joyal model
structure).

3.1. Colimits in pullbacks of ∞-categories. Consider a homotopy pullback of
∞-categories in sSet equipped with the Joyal model structure:
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C′ C

D′ D.

q′

p′ p

q

Note that this situation arises when the diagram is a strict pullback and p or q
is an isofibration (= categorical fibration). Moreover, every homotopy pullback
may be replaced (up to Joyal equivalence) by a strict pullback of this form and, for
simplicity, we will often assume that the homotopy pullback is also a strict pullback
of simplicial sets.

Proposition 3.1.1. Suppose that C and D′ admit initial objects and these are
preserved by p and q. Then an object c′ ∈ C′ is initial if and only if p′(c′) ∈ D′ and
q′(c′) ∈ C are initial. Furthermore, there exists an initial object c′ ∈ C′.

Proof. See [2, Lemma 5.4.5.2].
We will first prove that there exists an object c′ ∈ C, which maps to initial objects
in C and D′. Let d′ ∈ D′ and c ∈ C be initial objects. Since q(d′) and p(c) are
also initial, they must be equivalent. Assuming that q is an isofibration (as we
may do without loss of generality), the equivalence q(d′) ' p(c) can be lifted to an
equivalence d′ ' d̃′ in D′. Then the pair (d̃′, c) defines an object in c′ ∈ C′ which
maps to the initial objects d̃′ and c respectively.

For any other object z ∈ C′, we have a homotopy pullback of mapping spaces (in
the Kan-Quillen model structure):

mapC′(c′, z) mapC(q
′(c′), q′(z))

mapD′(p′(c′), p′(z)) mapD(qp
′(c′), qp′(z)).

It follows that mapC′(c′, z) is contractible, since every other mapping space in the
square is contractible. This shows that c′ ∈ C′ is initial, thus, proving the second
assertion and the “if”-direction of the first assertion. Since any two initial objects
are equivalent, it follows that p′ and q′ also preserve initial objects, which then
concludes the proof of the first assertion. �

Corollary 3.1.2. Let K be a simplicial set and suppose that C and D admit all
K–indexed colimits and p and q preserve these. Then f̃ : K. → C′ is a colimit cone
of its restriction f : K → C′ if and only if p′ ◦ f̃ and q′ ◦ f̃ are colimit cones of p′ ◦ f
and q′ ◦ f . Furthermore any diagram f : K → C′ admits a colimit cone.

Proof. See [2, Lemma 5.4.5.5].
Using Proposition 3.1.1 and the fact that a diagram f : K → C admits a colimit if
and only if Cf/ has an initial object, it suffices to check that the induced pullback
square

C′
f/ Cq′f/

D′
p′f/ Dqp′f/
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is a homotopy pullback of ∞-categories. For this, it suffices to check that the functor
D′

p′f/ → Dqp′f/ is an isofibration (=categorical fibration), that is, we need to solve
the following equivalent lifting problems:

A D′
p′f/ K ? A D′

B Dqp′f/ K ? B D.

' ' q

The square on the right admits a lift because K ?− preserves monomorphisms and
Joyal equivalences, and q is an isofibration (by assumption). �

The following proposition gives a criterion for the identification of κ-compact
objects in pullbacks of ∞-categories.

Proposition 3.1.3. Let κ be a regular cardinal such that C and D′ admit κ-filtered
colimits and p and q preserve these. If for some object c′ ∈ C′, the objects q′(c′),
p′(c′) and pq′(c′) = qp′(c′) are all κ-compact, then c′ is also κ-compact.

Proof. See [2, Lemma 5.4.5.7].
Let f : K → C′ be a κ-filtered diagram. We know from Corollary 3.1.2 that f admits
a colimit and the functors p′ and q′ preserve this colimit. Since q′(c′), p′(c′) and
qp′(c′) are κ-compact, we have equivalences as follows,

mapC(q
′(c′), q′(colimK f)) ' mapC(q

′(c′), colimK q′f) ' colimK mapC(q
′(c′), q′f),

and similarly for the other two objects. Hence it suffices to check that we have a
homotopy pullback square of spaces (in the Kan-Quillen model structure):

colimK mapC′(c′, f) colimK mapC(q
′(c′), q′f)

colimK mapD′(p′(c′), p′f) colimK mapD(qp
′(c′), qp′f).

This follows from the fact that pullbacks in the ∞-category of spaces commute with
filtered colimits. �

3.2. Pullbacks of accessible ∞-categories. Our next goal is to prove the fol-
lowing theorem:

Theorem 3.2.1. Let

C′ C

D′ D

q′

p′ p

q

be a homotopy pullback of ∞-categories (with respect to the Joyal model structure)
where the ∞-categories C,D and D′ are accessible and the functors p and q are
accessible.

Then C′ is also accessible. Furthermore, a functor f : E → C′ is accessible if and
only if the functors p′ ◦ f and q′ ◦ f are accessible.
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By Proposition 2.2.4, we may assume that the ∞-categories C,D,D′ and the
functors p and q are κ-accessible for some regular cardinal κ. Then Corollary 3.1.2
shows that C′ admits κ-filtered colimits and also proves the second claim in the
theorem. By Proposition 2.3.1, there is τ �� κ such that in addition p and q send
τ -compact objects to τ -compact objects.

Therefore it suffices to prove the following more refined statement which also
emphasizes the role of the two cardinals κ and τ (cf. [3, 2.2]).

Theorem 3.2.2. Let κ ≺ τ be regular cardinals and let

C′ C

D′ D

q′

p′ p

q

be a homotopy pullback of ∞-categories (with respect to the Joyal model structure).
Suppose that:

(i) C,D and D′ are τ -accessible and admit κ-filtered colimits.
(ii) p and q preserve κ-filtered colimits and τ -compact objects.

Then C′ is τ -accessible and admits κ-filtered colimits.

Outline of the Proof. Consider the homotopy pullback of essentially small ∞-
categories:

C′′ Cτ

D′τ Dτ .

q′

p′ p

q

We may view C′′ as an essentially small full subcategory of C′. As a consequence
of Proposition 3.1.3, the pullback C′′ consists of τ -compact objects in C′. The
∞-category C′′ is our candidate of an essentially small full subcategory to generate
C′ under τ -filtered colimits. Proving this would then allow us to conclude that C′ is
τ -accessible using the characterization of Theorem 2.1.2(3).

Let c′ ∈ C′ be an object and d′ = p′(c′), c = q′(c′), d = pq′(c′). Then we obtain a
homotopy pullback of ∞-categories:

C′′
/c′ Cτ

/c

D′τ
/d′ Dτ

/d.

q′

p′ p

q

The three outer ∞-categories are τ -filtered as a consequence of the assumption that
C, D, and D′ are τ -accessible1.

1To see that Cτ
/c

is τ -filtered, consider a τ -small diagram f : K → Cτ
/c

and write c as a colimit
of a τ -filtered diagram J → Cτ , j 7→ cj , of τ -compact objects. Then it suffices to prove that f ,
regarded as a cone in C, factors through some stage (cj → c) of this τ -filtered diagram. But note
that f is canonically identified with a point in the space limi∈Kop mapC(f(i), c), and then the
equivalences

limKop map(f(i), c) ' limKop colimJ map(f(i), cj) ' colimJ limKop map(f(i), cj)

show the required factorization. The other two cases are treated in the same way.
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In addition, the three outer ∞-categories in the pullback define canonical τ -filtered
diagrams of τ -compact objects in the respective ∞-categories C, D, and D′, with
colimits the objects c, d, and d′, respectively. (Explicitly, in the case of Cτ

/c for
example, this says that the canonical cone with cone object c

(Cτ
/c)

. → C/c → C

defines a colimit diagram. To see this, recall that the inclusion Cτ ↪→ C extends to
an equivalence Indτ (Cτ ) ' C – see the proof of Proposition 2.1.2 – and then note
that the canonical functor Cτ

/c → Cτ is the right fibration which corresponds to
the presheaf (Cτ )op → S, x 7→ mapC(x, c), i.e., the image of c under the restricted
Yoneda functor C → P(Cτ ).)

Then it suffices to prove the following two claims:
Claim (A). The pullback C′′

/c′ is τ -filtered.
Claim (B). The functors p′ : C′′

/c′ → D′τ
/d′ and q′ : C′′

/c′ → Cτ
/c are cofinal.

Indeed, assuming (A) and (B), we have a τ -filtered diagram

C′′
/c′ → C′′ → C′

whose colimit is given by c′, as a consequence of Corollary 3.1.2 and (B). As explained
above, this suffices to conclude the first claim of Theorem 3.2.2. The second claim
of Theorem 3.2.2 is immediate from Corollary 3.1.2. This completes our outline of
the proof. �

The proofs of Claims (A) and (B) require intricate cofinality arguments and will
be given in the Appendix below.

Appendix A. The proofs of Claims (A) and (B)

We will make use of the following proposition.

Proposition A.1. Let τ be a regular cardinal. Let C be a τ -accessible ∞-category
and f : K → Cτ a τ -small diagram in C. Then Cf/ is τ -accessible and the τ -compact
objects in Cf/ are exactly those which are sent to τ -compact objects under the
canonical functor Cf/ → C.

Proof. The ∞-category Cf/ admits τ -filtered colimits [2, Lemma 5.4.5.14]. Con-
sider the full subcategory Cτ

f/ = Cf/ ×C Cτ of Cf/. Note that this is essentially small.
Every object (K. → Cτ ) in Cτ

f/ is τ -compact in Cf/ [2, Lemma 5.4.5.13]. To see
this, first recall that Cf/ is equivalent to the (homotopy) pullback

Cf/ Fun(K ×∆1/K × {1}, C)

∆0 Fun(K × {0}, C).f

Then, using Proposition 3.1.3, we may reduce the claim to the statement that a
pointwise τ -compact object in Fun(L, C) is τ -compact, assuming that L is τ -small.
This statement can be shown by induction on the skeletal filtration of L using
Proposition 3.1.3.
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Therefore, by Proposition 2.1.2, it suffices to show that Cτ
f/ generates Cf/ under

τ -filtered colimits. Let C = (K. → C) be an object of Cf/ and let c ∈ C denote the
image of the cone point of K.. There is a τ -directed poset J and a diagram

φ : J → Cτ , j
φ7→ cj ,

such that c ' colimJ φ – this uses [2, Proposition 5.3.1.18]. Note that the object
C ∈ Cf/ corresponds canonically to a point in

mapCK (f, c) ' lim
Kop

mapC(f(−), c)

where c : K → C denotes the constant functor at c ∈ C. Using that f takes values in
τ -compact objects in C, K is τ -small, and the fact that τ -filtered colimits commute
with τ -small limits in the ∞-category of spaces, it follows that the cone C : K. → C
factors through some cone Ci : K

. → Cτ with cone object ci ∈ Cτ . In other words, C
is obtained from Ci by composing with the canonical morphism (ci → colimJ φ ' c).

Let J≥i (resp. J>i) denote the full subcategory of J spanned by the objects
j ≥ i (resp. j > i). Note that J≥j is again τ -filtered and J≥i

∼= ∆0 ? J>i. We have
constructed a diagram in C as follows,

K ?∆0 ∪∆0 ∆0 ? J>i

Ci∪ci
φ|J≥i−−−−−−−→ Cτ .

The inclusion K ?∆0 ∪∆0 ∆0 ?J>i ⊆ K ?∆0 ?J>i is a Joyal equivalence [2, Lemma
5.4.5.10], therefore we obtain an extension of the last diagram:

K ?∆0 ? J>i → Cτ .

The adjoint of this map defines a diagram
J≥i → Cτ

f/.

We claim that C is canonically a colimit of this diagram. To see this, it suffices
to observe that c is canonically a colimit of the composition J≥i → Cτ

f/ → Cτ → C,
since J≥i ⊆ J is cofinal. This completes the proof that Cf/ is τ -accessible.

Since Cτ
f/ ⊆ (Cf/)τ generates Cf/ under τ -filtered colimits, it follows that every

τ -compact object in Cf/ is a retract of an object in Cτ
f/. Since Cτ

f/ is idempotent
complete, the required identification of (Cf/)τ follows. �

For the proof of Claim (A), it will be convenient to work with the following
weaker notion of weak cofinality (see also [2]). This notion will also be used for the
proof of Claim (B) based on the observation that cofinality is a form of iterated
weak cofinality.

Definition A.2. Let p : C → D be a functor between ∞-categories. Then for any
object d ∈ D, we define the ∞-category Cd/ by the pullback

Cd/ Dd/

C D.p

The functor p is cofinal if (and only if) for any object d ∈ D, the ∞-category Cd/ is
weakly contractible. p is called weakly cofinal if for any object d ∈ D, the ∞-category
Cd/ is non-empty.

Lemma A.3. Assume the same notation as in Theorem 3.2.2.
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(1) The functor p : Cτ
/c → Dτ

/d is weakly cofinal.
(2) Let f : K → Cτ

/c be a τ -small diagram. Then the induced functor

(Cτ
/c)f/ → (Dτ

/d)pf/

is weakly cofinal.
(3) Let h : T ? K → (Cτ

/c) be a diagram where T is an arbitrary simplicial set
and K is τ -small and weakly contractible. Then the induced functor

(Cτ
/c)h/ → (Dτ

/d)ph/

is weakly cofinal.

Proof. (1): Let (u : x → d) be an object of Dτ
/d. We can write c ' colimJ cj as

a τ -filtered colimit of τ -compact objects in C. Since x is τ -compact in D and p
preserves τ -filtered colimits, it follows that for some (cj → c) there is a factorization
in D of the form

x p(c) = d.

p(cj)

u

This shows that (Cτ
/c)u/ is non-empty, as required.

(2): Applying Proposition A.1, we obtain equivalences of ∞-categories:

(Cτ
/c)f/ ' (Cτ

f ′/)/c̃ ' (Cf ′/)
τ
/c̃

(Dτ
/d)pf/ ' (Dτ

pf ′/)/pc̃ ' (Dpf ′/)
τ
/pc̃

where c̃ ∈ Cf ′/ denotes the canonical cone on f ′ : K
f−→ Cτ

/c → Cτ in C defined by the
object c ∈ C. Then the required result follows from (1) above for Cf ′/ in place of C
and Dpf ′/ in place of D.
(3): Let i : K ↪→ T ? K denote the inclusion and consider the commutative diagram:

(Cτ
/c)h/ (Dτ

/d)ph/

(Cτ
/c)hi/ (Dτ

/d)phi/.

The inclusion i is right anodyne (see [2, Lemma 4.2.3.6]). It follows that the vertical
maps are trivial fibrations. By (2), the lower horizontal functor is weakly cofinal.
Therefore the upper horizontal functor is weakly cofinal as well. �

The following lemma proves Claim (A). Note that a proof of Claim (A) must
show in particular that C′′

/c′ is non-empty – this turns out to be the main difficulty.
The proof is based on a key construction which also highlights the interplay between
the chosen regular cardinals κ and τ in Theorem 3.2.2.

Proposition A.4. Assume the same notation as in Theorem 3.2.2. Let g : T → C′′
/c′

be a diagram indexed by a τ -small simplicial set. Then the induced homotopy
pullback
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(C′′
/c′)g/ (Cτ

/c)q′g/

(D′τ
/d′)p′g/ (Dτ

/d)pq′g/

p

q

is non-empty. As a consequence, the ∞-category C′′
/c′ is τ -filtered.

Proof. See [2, Lemma 5.4.6.3]. (In the proof below, the symbol (∗) will indicate
the arguments in the proof which use any of our special assumptions from Theorem
3.2.2.)

Let α be an ordinal. We consider the partially ordered sets [α] = {β : β 4 α }
and (α) = {β : β ≺ α }. Furthermore, we will call α even if α = λ+ n where λ is a
limit ordinal and n is even, and odd otherwise.

Let A be the partially ordered set of even ordinals which are smaller than κ and
A′ the partially ordered set of odd ordinals smaller than κ. Note that A and A′ are
κ-filtered, τ -small, and cofinal in (κ). We will construct a commutative diagram as
follows:

N(A) N(κ) N(A′)

(Cτ
/c)q′g/ (Dτ

/d)pq′g/ (D′τ
/d′)p′g/.

p Q q

p q

Assuming that such a diagram has been constructed, we may then proceed as
follows. First, since left fibrations create weakly contractible colimits [2, Proposition
4.4.2.9] and the lower ∞-categories define left fibrations over ∞-categories which
admit τ -small κ-filtered colimits, it follows that the vertical diagrams p,Q and q (∗)
admit colimits. Moreover, using [2, Proposition 4.4.2.9] and the fact that p : C → D
and q : D′ → D are κ-accessible, it follows that the lower horizontal functors in the (∗)
diagram above (which are also denoted by p and q) preserve the colimits of the
diagrams p and q, respectively. Since the upper horizontal functors are cofinal, we
have equivalences in (Dτ

/d)pq′g/

p(colimN(A) p) ' colimN(κ) Q ' q(colimN(A′) q).

These equivalences define an object in (C′′
/c′)g/, concluding the proof of the Proposi-

tion. Therefore it suffices to construct a commutative diagram as indicated above.
We will construct this diagram by transfinite induction. We will only treat the

even case, since the other case is similar (but without the limit case). Suppose that
p and Q have been constructed for all ordinals smaller than α. We will show how
to extend these diagrams to N({β ∈ A : β 4 α}) and N([α]) respectively.

If α is a limit ordinal, then we can simply start by choosing a cone on p

N({β ∈ A : β ≺ α }) (Cτ
/c)q′g/

N({β ∈ A : β 4 α })

p

p.

using the fact that the ∞-category in the target is τ -filtered – see the proof of (∗)
Lemma A.3(2). Then we obtain a commutative diagram
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N({β ∈ A : β ≺ α }) N((α))

N({β ∈ A : β 4 α }) (Dτ
/d)pq′g/.

Q

p◦p.

In order to extend Q to N([α]), we have to solve the following lifting problem:

N({β ∈ A : β 4 α })
∐

N({ β∈A : β≺α }) N((α)) (Dτ
/d)pq′g/.

N([α])

Such an extension exists because the vertical monomorphism is a Joyal equivalence [2,
Lemma 5.4.6.2]. This completes the inductive step in the case of a limit ordinal.

Now suppose that α = α0+1 is a successor ordinal and assume that the diagrams
p≺α : N({β ∈ A : β ≺ α }) = N({β ∈ A : β ≺ α0 }) → (Cτ

/c)q′g/ and

Q : N(α) = N({β : β ≺ α0 } ∪ {α0}) → (Dτ
/d)pq′g/

have been constructed. By adjunction, these two compatible diagrams determine in
particular an object

c(α0) : ∆
0 → ((Dτ

/d)pq′g/)pp≺α/.

By Lemma A.3, the canonical functor that is induced by p,
pp≺α/ : ((Cτ

/c)q′g/)p≺α/ → ((Dτ
/d)pq′g/)pp≺α/

is weakly cofinal. Therefore there is an object c(α) : ∆0 → ((Cτ
/c)q′g/)p≺α/ together(∗)

with a morphism ϕ : c(α0) → pp≺α/(c(α)). By adjunction, the objects c(α0), c(α),
and the morphism φ determine the dashed arrows in the following commutative
diagram:

N({ β∈A : β4α }) N({ β∈A : β4α }∪{α0}) N({ β∈A : β≺α0 }∪{α0})

(Cτ
/c)q′g/ (Dτ

/d)pq′g/ N((α))p Q

Thus, in order to extend Q to N([α]), we need to solve the following lifting problem:

N({β ∈ A : β 4 α } ∪ {α0})
∐

N({ β∈A : β≺α0 }∪{α0}) N((α)) (Dτ
/d)pq′g/

N([α])

which is possible because the vertical monomorphism is a Joyal equivalence [2, Lemma
5.4.6.2]. This completes the inductive step in the case of a successor ordinal and
concludes the proof of the Proposition. �

Lastly, the following proposition proves Claim (B).

Proposition A.5. The functors p′ : C′′
/c′ → D′τ

/d′ and q′ : C′′
/c′ → Cτ

/c are cofinal.

Proof. We only prove the claim in the case of q′ since the proof for p′ is completely
analogous. Given an object (x → c) ∈ Cτ

/c, we consider the commutative diagram
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E C′′
/c D′τ

/d′

(Cτ
/c)(x→c)/ Cτ

/c Dτ
/dπ

in which both squares are (homotopy) pullbacks. It suffices to prove that E is filtered
(and, as a consequence, weakly contractible). For any diagram g : T → E , where T
is a finite simplicial set, we may consider the corresponding pullback diagrams that
are obtained after slicing under g – similarly to Proposition A.4. We claim that the
resulting pullback Eg/ is non-empty.

This can be shown using essentially the same arguments as in the proof of
Proposition A.4. Indeed, a close inspection of the proof of Proposition A.4 shows that
it suffices to verify in addition the following properties (the essential requirements
for the proof of Proposition A.4 are indicated by the symbol (∗) in the proof):

(1) For any diagram u : T → (Cτ
/c)(x→c)/ indexed by a finite simplicial set T ,

the ∞-category ((Cτ
/c)(x→c)/)u/ admits τ -small κ-filtered colimits. More

generally, we note that the left fibration
((Cτ

/c)(x→c)/)u/ → (Cτ
/c)πu/

creates weakly contractible colimits [2, Proposition 4.4.2.9].
(2) (Cτ

/c)(x→c)/ is τ -filtered. This follows easily from the fact that Cτ
/c is τ -

filtered.
(3) For any diagram v : T ? K → (Cτ

/c)(x→c)/, where T is finite and K is
τ -small and weakly contractible, the induced functor ((Cτ

/c)(x→c)/)v/ →
(Cτ

/c)πv/ is weakly cofinal. This follows from Lemma A.3 for the ∞-category
(Cτ

/c)(x→c)/ ' (Cx/)τ/(x→c) in place of Cτ
/c and Cτ

/c in place of Dτ
/d.

�
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