FILTERED COLIMITS AND COMPACT OBJECTS

P. HANUKAEV

1. Filtered ∞ -Categories

Definition 1.1. Let κ be a regular cardinal. We call a simplicial set $X \kappa$ -small if the set of non-degenerate simplices of X has cardinality less than κ . If $\kappa = \omega$, then we also say that X is *finite*.

Remark 1.2. We call a category finite if both its set of objects and the set of all its morphisms are finite. An ordinary category \mathcal{C} is filtered if and only if any diagram $I \to \mathcal{C}$ with I a finite category admits a cone $I^{\triangleright} \to \mathcal{C}$.

Definition 1.3. Let κ be a regular cardinal and \mathbb{C} an ∞ -category. We call \mathbb{C} κ -filtered if for any κ -small simplicial set K and any diagram $f: K \to \mathbb{C}$ there exists $\overline{f}: K^{\triangleright} \to \mathbb{C}$ extending f. We say \mathbb{C} is filtered if it is ω -filtered.

Remark 1.4. If C is an ordinary category, then C is filtered if and only if N(C) is filtered.

Remark 1.5. An ∞ -category \mathbb{C} is κ -filtered if and only if for any diagram $p: K \to \mathbb{C}$ with K a κ -small simplicial set, the slice ∞ -category $\mathbb{C}_{p/}$ is non-empty. Any equivalence $f: \mathbb{C} \to \mathcal{D}$ induces an equivalence $\mathbb{C}_{p/} \to \mathcal{D}_{f \circ p/}$, so \mathbb{C} is κ -filtered if and only if \mathcal{D} is.

Proposition 1.6. Let \mathcal{C} a κ -filtered ∞ -category. There exists a κ -filtered partially ordered set A and a cofinal map $N(A) \rightarrow \mathcal{C}$.

PROOF. See [1, Proposition 5.3.1.18].

Lemma 1.7. Any κ -filtered ∞ -category is weakly contractible.

PROOF. Let \mathcal{C} be a κ -filtered ∞ -category. Since \mathcal{C} is filtered it is non-empty so fix an object $C \in \mathcal{C}$ and write C also for the corresponding point of $|\mathcal{C}|$. We need to show, that for all $n \geq 0$, the set $\pi_n(|\mathcal{C}|, C)$ consists of a single point. Let $f \colon S^n \to |\mathcal{C}|$ be a map. There exists a finite simplicial subset $K \subseteq \mathcal{C}$ such that f factors through $|K| \subseteq |\mathcal{C}|$. Since \mathcal{C} is filtered, the inclusion $K \hookrightarrow \mathcal{C}$ factors through K^{\triangleright} . Therefore, f factors as $S^n \to |K^{\triangleright}| \to |\mathcal{C}|$, which shows that f is null-homotopic, since K^{\triangleright} is weakly contractible. \Box

Theorem 1.8. Let S be the ∞ -category of spaces, κ a regular cardinal and J an ∞ -category. The following are equivalent:

- i) The ∞ -category \mathfrak{I} is κ -filtered.
- ii) The colimit functor $\operatorname{Fun}(\mathfrak{I}, \mathfrak{S}) \to \mathfrak{S}$ preserves κ -small limits.

For a proof, see [1, Proposition 5.3.3.3].

P. HANUKAEV

2. Compact Objects

Definition 2.1. Let \mathcal{C} be an ∞ -category which admits small κ -filtered colimits.

- i) A functor $f: \mathbb{C} \to \mathcal{D}$ is called κ -continuous if it preserves small κ -filtered colimits.
- ii) Let $C \in \mathcal{C}$ be an object and let $j_C \colon \mathcal{C} \to \mathcal{S}$ be the functor corepresented by C. We say that C is κ -compact if j_C is κ -continuous.
- iii) A left fibration $\mathcal{E} \to \mathcal{C} \kappa$ -compact if it corresponds to a κ -continuous functor $\mathcal{C} \to \mathcal{S}$.

Lemma 2.2. Let κ be a regular cardinal.

- i) Let \mathcal{C} be an ∞ -category which admits small κ -filtered colimits and let $C \in \mathcal{C}$ be an object. The object C is κ -compact if and only if the left fibration $p: \mathcal{C}_{C/} \to \mathcal{C}$ is κ -compact.
- ii) Let f: C → D be a κ-continuous functor, where C, D are ∞-categories which admit small κ-filtered colimits. If p: E → D is a κ-compact left fibration, then p': C×_D E → C is κ-compact.

PROOF. See [1, Lemma 5.3.4.8].

- i) p is classified by the corepresentable functor j_C .
- ii) Note that p' is classified by the composite $\mathfrak{C} \xrightarrow{f} \mathfrak{D} \xrightarrow{p} \mathfrak{S}$ where \widetilde{p} classifies p.

Lemma 2.3. Let κ be a regular cardinal, \mathbb{C} an ∞ -category which admits small κ -filtered colimits and $f: c \to d$ a morphism in \mathbb{C} . If the objects c and d are κ -compact, then f is a κ -compact object of Fun (Δ^1, \mathbb{C}) .

PROOF. See [1, Lemma 5.3.4.9]. Note that the corepresentable functor by f can be expressed as a finite limit of the corepresentable functors by c and d combined with the two projections $\operatorname{Fun}(\Delta^1, \mathbb{C}) \to \mathbb{C}$.

Lemma 2.4. Let κ be a regular cardinal and let $\{\mathcal{C}_{\alpha}\}$ be a κ -small family of ∞ -categories with product \mathcal{C} . Suppose that each \mathcal{C}_{α} admits small κ -filtered colimits.

- i) The ∞ -category C admits small κ -filtered colimits.
- ii) If $C \in \mathcal{C}$ is an object such that the image of C in each \mathcal{C}_{α} is κ -compact, then C is a κ -compact object of \mathcal{C} .

PROOF. See [1, Lemma 5.3.4.10]. (i) is obvious because colimits can be computed pointwise. (ii): Note that κ -small limits commute with κ -filtered colimits.

Proposition 2.5. Let κ be a regular cardinal, \mathbb{C} an ∞ -category which admits small κ -filtered colimits and $f: K \to \mathbb{C}$ a diagram with K a κ -small simplicial set. If f(x) is κ -compact for each $x \in K$, then f is a κ -compact object of Fun (K, \mathbb{C}) .

PROOF. See [1, Proposition 5.3.4.13]. Call a simplicial set K good if it satisfies the conclusion of the Proposition. We want to show that any κ -small simplicial set is good.

(1) Suppose

is a pushout square with K', K, L' good simplicial sets and *i* a cofibration. We claim that *L* is good: Consider the (homotopy) cartesian square

All arrows in this square preserve κ -filtered colimits. If $f: L \to \mathbb{C}$ is as in the hypothesis, then the images of f in \mathbb{C}^K and $\mathbb{C}^{L'}$ are κ -compact, so f is κ -compact (see [1, Lemma 5.4.5.7]).

(2) If $K \to K'$ is a Joyal-equivalence and K is good, then K' is good, because the restriction $\mathbb{C}^{K'} \to \mathbb{C}^{K}$ is an equivalence and hence preserves (and detects) κ -compact objects.

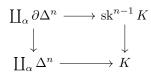
(3) For any $n \ge 0$ the simplex Δ^n is good. The inclusion

$$I^n = \Delta^1 \sqcup_{\Delta^0} \Delta^1 \sqcup_{\Delta^0} \ldots \sqcup_{\Delta^0} \Delta^1 \hookrightarrow \Delta^n$$

is a Joyal-equivalence. So, we only need to treat the case $n \leq 1$. The case n = 0 is clear, and the case n = 1 was Lemma 2.3.

(4) If $\{K_{\alpha}\}_{\alpha}$ is a κ -small collection of good simplicial sets and $K = \coprod_{\alpha} K_{\alpha}$, then K is good. We have $\operatorname{Fun}(K, \mathbb{C}) \cong \prod_{\alpha} \operatorname{Fun}(K_{\alpha}, \mathbb{C})$. If $f: K \to \mathbb{C}$ satisfies the hypothesis, then the image of f in each $\operatorname{Fun}(K_{\alpha}, \mathbb{C})$ satisfies the hypothesis and is therefore κ -compact. It follows from Lemma 2.4 that f is κ -compact.

(5) Any κ -small simplicial set K with dim $K < \infty$ is good. By induction: The case n = 0 follows from parts (3) and (4). For n > 0 we have a pushout



so K is good by the previous steps.

(6) Every κ -small simplicial set is good: If $\kappa = \omega$ this follows from (5), since ω -small means finite. Otherwise we have the skeletal filtration

$$\mathrm{sk}^{0}(K) \subseteq \mathrm{sk}^{1}(K) \subseteq \ldots$$

from which we obtain a tower of ∞ -categories

$$\ldots \to \operatorname{Fun}(\operatorname{sk}^1(K), \mathfrak{C}) \to \operatorname{Fun}(\operatorname{sk}^0(K), \mathfrak{C})$$

with limit $\operatorname{Fun}(K, \mathbb{C})$. As in (1), each arrow in the tower preserves (κ -filtered) colimits. By a lemma similar to 2.4 (see [1, Lemma 5.3.4.12]) it suffices to check that the image of $f: K \to \mathbb{C}$ in each $\operatorname{Fun}(\operatorname{sk}^n(K), \mathbb{C})$ is κ -compact which holds by (5).

Corollary 2.6. Let κ be a regular cardinal and \mathbb{C} an ∞ -category which has small κ -filtered colimits. If $p: K \to \mathbb{C}$ is a κ -small diagram such that for each $x \in K$ the object p(x) of \mathbb{C} is κ -compact, then the left fibration $\mathbb{C}_{p/} \to \mathbb{C}$ is κ -compact.

PROOF. See [1, Corollary 5.3.4.14].

Corollary 2.7. Let \mathcal{C} be an ∞ -category which has small κ -filtered colimits and let \mathcal{C}^{κ} denote the full subcategory of κ -compact objects. Then \mathcal{C}^{κ} is stable under formation of κ -small colimits which exist in \mathcal{C} .

PROOF. Let K be a κ -small simplicial set, $p \colon K \to \mathbb{C}^{\kappa}$ a diagram and $\overline{p} \colon K^{\triangleright} \to \mathbb{C}$ a colimit cone over p. We have a diagram

$$\mathfrak{C}_{p/} \longleftarrow \mathfrak{C}_{\overline{p}/} \longrightarrow \mathfrak{C}_{\overline{p}(\infty)/}$$

where the left map is a trivial fibration because \overline{p} is a colimit and the right map is a trivial fibration because $\{\infty\} \to K^{\triangleright}$ is left anodyne. Hence, the left fibrations $\mathcal{C}_{p/} \to \mathcal{C}$ and $\mathcal{C}_{\overline{p}(\infty)/} \to \mathcal{C}$ are equivalent and the former is κ -compact, so $\overline{p}(\infty)$ is also κ -compact.

Remark 2.8. In the situation as above, C^{κ} is stable under retracts (see [1, Remark 5.3.4.16]).

Proposition 2.9. Let \mathcal{C} be a small ∞ -category, κ a regular cardinal, and $C \in \mathcal{P}(\mathcal{C})$ an object. The following are equivalent:

- i) There exists a diagram $p: K \to \mathbb{C}$ with K a κ -small simplicial set such that
- $j \circ p$ has a colimit D in $\mathcal{P}(\mathcal{C})$ and C is a retract of D.
- ii) The object C is κ -compact.

PROOF. We only present the proof of "(i) \Rightarrow (ii)" and refer to [1, Proposition 5.3.4.17] for the converse.

Recall that we write $j: \mathcal{C} \to \mathcal{P}(\mathcal{C})$ for the Yoneda embedding. By [1, Proposition 5.1.6.8], for any $A \in \mathcal{C}$ the object $j_A \in \mathcal{P}(\mathcal{C})$ is completely compact, that is the functor $\mathcal{P}(\mathcal{C}) \to \mathcal{S}$ corepresented by j_A preserves all small colimits. In particular the object j_A is κ -compact for any $A \in \mathcal{C}$. The claim now follows from Corollary 2.7 and Remark 2.8.

References

 Jacob Lurie. Higher Topos Theory (AM-170). Princeton University Press, 2009. Online revised version: www.math.ias.edu/~lurie/papers/HTT.pdf.