
∞-CATEGORIES OF PRESHEAVES

BENEDIKT PREIS

1. Introduction

Our goal is to define the Yoneda embedding for ∞-categories and prove that it
satisfies a universal property.

Let us first recall the 1-categorical context. Let C be an ordinary (small) category
and let P(C)∶ = Fun(Cop, Sets) denote the (ordinary) category of presheaves on C.
The Yoneda-functor

y ∶ C Ð→ P(C), c↦ HomC(●, c).

is fully faithful and satisfies the following universal property:

Theorem 1.1. Let F ∶ C → D be a functor between ordinary categories where
C is small and D admits all small colimits. Then there exists a unique (up to
unique natural isomorphism) colimit-preserving functor F! ∶ P(C) → D such that
the diagram:

C D

P(C)

F

y
F!

commutes up to a natural isomorphism. Moreover, restriction along the Yoneda
embedding induces an equivalence of ∞-categories,

y∗∶FunL(P(C),D)
≃
Ð→ Fun(C,D),

where FunL(P(C),D) denotes the full subcategory of Fun(P(C),D) which is spanned
by colimit-preserving functors.

The functor F! is the left Kan-extension of the functor F ∶ C → D along the
Yoneda embedding y. The main idea of the proof of Theorem 1.1 is that for any
presheaf X ∈ P(C), we have a canonical identification in P(C):

X ≅ colimy(c)→X y(c)

which can be used to identify F!(X) canonically with colimy(c)→X F (c). Moreover,
F! has a right adjoint

F ∗ ∶ D → P(C)

given on objects by
d↦ HomD(F (●), d).

Examples of adjunctions of this form include:

(1) The (homotopy category/nerve functor)-adjunction between simplicial sets
and small categories (see [3, 1.2.3]):

ho ⊣ N ∶ sSet⇄ Cat .
1
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(2) The (geometric realization/singular set)-adjunction between simplicial sets
and topological spaces:

∣ − ∣ ⊣ Sing(−) ∶ sSet⇄ Top .

2. Simplicial categories and the Coherent Nerve Functor

Let Cat∆ denote the category of small simplicially enriched categories. There is
an adjunction:

(*) sSet Cat∆ .

C

N∆

⊣

arising as the extension by colimits of a functor/cosimplicial object C ∶ ∆Ð→ Cat∆.
This functor is defined as follows:

(i) Ob C([n]) = {0, . . . , n}
(ii)

HomC([n])(i, j) =

⎧⎪⎪
⎨
⎪⎪⎩

∅ if i > j

N(Pi,j) if i ≤ j

where Pi,j is the poset of subsets

Pi,j = {I ⊂ [i, j] ∣ i, j ∈ I}

partially ordered by inclusion of subsets.
(iii) The composition in C([n]) is induced by the operation of taking unions of

subsets.

The right adjoint N∆ is the coherent nerve functor.

Let us describe the adjunction (*) in some more detail. Given a simplicial category
S, we obtain a simplicial set N∆(S) defined by

N∆(S)n = HomCat∆
(C([n]), S).

The lower degrees of the cosimplicial object C([●]) can be described as follows:

(0) C([0]) has one object 0 and HomC([0])(0,0) is isomorphic to ∆0.

(1) C([1]) has two objects 0 and 1 and every Hom-sSet is isomorphic to ∆0

except for HomC([1])(1,0), which is empty. In other words, it is isomorphic

to the (simplicial) category ∆1.
(2) C([2]) consists of three objects 0,1 and 2 such that

HomC([2])(i, i) (0 ≤ i ≤ 2), HomC([2])(0,1), and HomC([2])(1,2)

are isomorphic to ∆0,

HomC([2])(0,2) = N({0,2} < {0,1,2}) ≅ ∆1,

and every other Hom-sSet is empty.

We can then directly describe the 0-,1- and 2-simplicies of N∆(S) as follows:

(0) N∆(S)0 = Ob S.
(1) An element in N∆(S)1 is specified by two objects x, y ∈ S and a 0-simplex

in HomS(x, y)0.
(2) An element of N∆(S)2 is specified by three objects x, y, z ∈ S, 0-simplices

f ∈ HomS(x, y)0, g ∈ HomS(y, z)0 and h ∈ HomS(x, z)0 together with an
1-simplex (= path) h→ g ○ f in HomS(x, z)1.
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See also [3, 1.1.5].

Lemma 2.1. Let D be an ∞-category. Then there is a natural isomorphism
ObC(D) ≅ D0.

Proof. Both functors ObC(−), (−)0 ∶ sSet → Set preserve colimits. Moreover, using
the description of C above, their restrictions along the Yoneda embedding y ∶ ∆ →
sSet, [n] ↦∆n, are canonically isomorphic. �

Proposition 2.2. Let C be a simplicial category such that HomC(x, y) is a Kan
complex for every x, y ∈ C. Then the coherent nerve N∆(C) is an ∞−category.

Proof. See [3, Proposition 1.1.5.10]. �

Definition 2.3. Let f ∶ C → D be a functor between simplicial categories in Cat∆.
We call F a categorical equivalence if the following are satisfied:

(1) F is weakly fully faithful, i.e., it induces weak equivalences F ∶ HomC(x, y) →
HomD(Fx,Fy) for every x, y ∈ C.

(2) The functor π(F ) is essentially surjective. Here π ∶ Cat∆ → Cat is induced
by the monoidal functor π0 ∶ sSet→ Set.

There is a model structure on Cat∆ where the weak equivalences are the categor-
ical equivalences and the fibrations are the simplicial functors f ∶ C → D satisfying:

(1) The map f ∶ HomC(x, y) → HomD(fx, fy) is a Kan fibration for every
x, y ∈ C.

(2) For any y ∈ D, x ∈ C and a homotopy equivalence a ∶ y → f(x), that is, a
morphism which becomes an isomorphism in π(D), there exists x′ ∈ C and
a homotopy equivalence b ∶ x′ → x such that f(b) = a.

See [1] and [3, A.3.2]. With this model structure and the Joyal model structure on
sSet, the adjunction (*) becomes a Quillen equivalence (see, for example, [3, 2.2]).
In particular, this means that for every fibrant simplicial category D in Cat∆, the
canonical counit map

εD ∶ CN∆(D) → D

is a categorical equivalence. The following proposition is an easy consequence of
the Quillen equivalence (C,N∆).

Proposition 2.4. Let C be an ∞-category, D a fibrant simplicial category in Cat∆,
and let f ∶ C → N∆(D) be a functor of ∞-categories. We denote by f̃ ∶ C(C) → D

the morphism in Cat∆ which is adjoint to f . Then f̃ is weakly fully faithful if and
only if f is fully faithful.

Proof. Let i ∶ E ↪ N∆(D) denote the full subcategory spanned by the objects in

the image of f . Consider the factorization of f̃

C(C) C(N∆(D)) D

C(E)
C(f ′)

C(f) εD

C(i)

where εD is a categorical equivalence. It follows from the definition of C(−) that

the functor C(i) is weakly fully faithful. Hence f̃ is weakly fully faithful if and only
if C(f ′) is a categorical equivalence. Using the Quillen equivalence (C,N∆), C(f ′)
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is a categorical equivalence if and only if f ′ is a Joyal equivalence (⇐⇒ f is fully
faithful). �

3. Presheaves

Let Kan denote the full simplicical subcategory of sSet consisting of Kan com-
plexes with the usual simplicial enrichment (Kan is enriched in Kan complexes),
and let S ∶= N∆(Kan) be (a model for) the ∞-category of spaces.

Definition 3.1. Let S be a simplicial set. We define the ∞-category P(S) of
presheaves on S to be Fun(Sop,S).

An equivalent model for the ∞-category of presheaves on S is constructed as
follows. Start with C ∈ Cat∆ such that S ≃ N∆(C). We consider the simplical
category of simplicial functors Fun∆(Cop, sSet) equipped with the projective model
structure where the weak equivalences and the fibrations are defined pointwise
(with respect to the Kan–Quillen model structure on sSet). There are categorical
equivalences of simplicial categories,

(**) Fun∆(C
op, sSet)○ ≃ Fun∆(C

op, sSet○) ≅ Fun∆(C
op,Kan),

and Fun∆(Cop, sSet)○ (= full subcategory of fibrant–cofibrant objects in the sim-
plicial model category Fun∆(Cop, sSet)) is enriched in Kan complexes. Then

P
′
(S) ∶= N∆(Fun∆(C

op, sSet)○)

is an ∞-category. As a consequence of general deep results on the comparison be-
tween the homotopy theories of strict and homotopy coherent diagrams [3, Propo-
sition 4.2.4.4], there is a natural equivalence of ∞-categories

P
′
(S) ≃ P(S).

See [3, 5.1.1]. We recall that this equivalence is obtained from the canonical evalu-
ation map

Fun∆(C
op,Kan) × Cop → Kan .

after applying N∆, passing to the adjoint map, and using (**).

Construction 3.2. We give a construction of the Yoneda-functor yS ∶ S → P(S)
in the ∞-categorical context following [3]. Let S be a simplicial set. For x, y ∈ C(S),
the rule

(x, y) ↦ Sing ∣HomC(S)(x, y)∣

determines a simplicial functor

Ĥom ∶ C(S) × C(S)op Ð→ Kan .

Thus, we obtain a composite simplicial functor

C(S × Sop) Ð→ C(S) × C(S)op
Ĥom
Ð→ Kan .

By adjunction, this induces a map of simplicial sets

S × Sop Ð→ N∆(Kan) ≃ S

which in turn defines by adjunction the required Yoneda-functor

yS ∶ S Ð→ P(S).

In the case where S is an ∞-category, we have for any x, y ∈ S

yS(x)(y) = Sing ∣HomC(S)(X,Y )∣ ≃ mapS(x, y)
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where the last equivalence is shown in [3, 2.2.4].

Proposition 3.3 (∞-categorical Yoneda embedding). The Yoneda-functor yS ∶

S → P(S) is fully faithful for every simplicial set S.

Proof. See [3, Proposition 5.1.3.1]. Let C = Sing ∣C(Sop)∣ be a fibrant replace-
ment of the simplicial category C(Sop), given by replacing HomC(Sop)(x, y) with
Sing ∣HomC(Sop)(x, y)∣ for all x, y ∈ C(Sop). Let ỹC ∶ C → Fun∆(Cop, sSet) denote
the usual (enriched) Yoneda embedding of simplicial categories – which is fully
faithful in the ordinary (enriched) sense. We observe that yS factors as

S
a
Ð→ N∆(Fun∆(C

op,Kan))
b
Ð→ Fun(Sop,S),

where a is the adjoint of the map

a′ ∶ C(S)
≃
Ð→ C

ỹC
Ð→ Fun∆(C

op,Kan)

and b is the equivalence of ∞-categories (that was discussed above):

N∆(Fun∆(C
op,Kan)) ≃ N∆(Fun∆(C(Sop),Kan))) ≃ Fun(Sop,S).

Hence it is enough to show that a is fully faithful. By Proposition 2.4, it suffices
to show that a′ is (weakly) fully faithful, which follows immediately from the fact
that the (enriched) Yoneda embedding ỹC is fully faithful. �

4. The universal property of the Yoneda embedding

Proposition 4.1. Let S be a simplicial set. The ∞-category P(S) of presheaves
on S admits all small limits and colimits and these can be computed pointwise.
(This means that a cone F ∶ K▷ → P(S) is a colimit cone if and only if evx ○ F ∶

K▷ → S is a colimit cone for every x ∈ S – and similarly for limits.)

Proof. See [3, 5.1.2]. We will only sketch the idea of the proof in the case of colimits.
Limits can be treated using similar arguments. The proof is an easy consequence
of the following facts:

(a) The ∞-category S of spaces admits all small colimits (and limits). (See,
for example, the discussion in [3, 5.1.2].)

(b) (see [2, 6.2]) For any ∞-category C and any simplicial set K, C admits
K-shaped colimits if and only if the constant diagram functor

constK ∶ C → Fun(K,C)

admits a left adjoint. In this case, the left adjoint is given by

colimK ∶ Fun(K,C) → C

F ↦ colimK F.

Combining (a) and (b), we conclude that constSop ∶ S → P(S) has a left adjoint
colimSop for any simplicial set S. It follows that for any simplicial set K, the
constant diagram functor of K-diagrams in P(S):

P(S) = Fun(Sop,S)
(constK)∗
Ð→ Fun(Sop,Fun(K,S)) ≅ Fun(K,Fun(Sop,S))

has a left adjoint, given pointwise as follows,

Fun(K,Fun(Sop,S)) ≅ Fun(Sop,Fun(K,S))
(colimK)∗
Ð→ Fun(Sop,S).

�
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The main result of this section is the following ∞-categorical analogue of Theo-
rem 1.1.

Theorem 4.2 (Universal property of the Yoneda embedding). Let C be a small
∞-category and D an ∞-category which admits small colimits. Then the restriction
functor induced by the Yoneda embedding

y∗C ∶ FunL(P(C),D) → Fun(C,D)

is an equivalence of ∞-categories, where FunL(P(C),D) denotes the full subcategory
of Fun(P(C),D) which is spanned by those functors which preserve small colimits.

See [3, Theorem 5.1.5.6]. The main ingredient of the proof, analogously to the
1-categorical case, is the following:

Proposition 4.3. Let C be a small ∞-category and F ∈ P(C). Then F is the
colimit of the canonical diagram:

φF ∶ C/F = C ×P(C) P(C)/F → P(C)/F Ð→ P(C).

Proof. See [3, Lemma 5.1.5.3]. By Proposition 4.1, it is enough to show that for
any x ∈ C, F (x) is the colimit of the composition of φF with the evaluation map

evx ○φF ∶ C/F ⊂ P(C)/F Ð→ P(C)
evx
Ð→ S .

Indeed we have a chain of natural equivalences:

colimC/F (evx ○φF ) ≃ colimyC(c)→F mapC(x, c) ≃ colimyC(c)→F colimx→c ∗

(J = C/F ×C Cx/)
(1)
≃ colimJ ∗

(I = C/F ×C {x})
(2)
≃ colimI ∗

(3)
≃ mapP(C)(yC(x), F )

(4)
≃ F (x).

The equivalence (1) is simply a rearrangement of the colimit operations. Note that
I and J are defined by the following pullback squares

I {x}

J Cx/

C/F C.

Then the equivalence (2) is a consequence of the fact that the induced monomor-
phism I → J is cofinal. (To see this, note that the ∞-category

I
(yC(c)

g
→F,x

u
→c)/

∶ = J
(yC(c)

g
→F,x

u
→c)/

×J I
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has an initial object defined by (yC(x)
g○yC(u)
ÐÐÐÐ→ F ).) For the equivalence (3), con-

sider the diagram of pullback squares

I {x}

C/F C

P(C)/F P(C).

yC

This shows that I is equivalent to map(yC(x), F ), which proves the equivalence (3).
Lastly, equivalence (4) holds by the ∞-categorical Yoneda lemma (see [3, Lemma
5.1.5.2] or [2, 5.8]). �
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