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G. RAPTIS

1. PRELIMINARIES

A functor F : € — 2 between oo-categories is a localization if it has a fully
faithful right adjoint G. Such an adjunction is determined by the endofunctor
L ;= GF : ¥ — % and the natural transformation « : 1l — L which has the
property that L(ac),arc) : L(C) — L*(C) are equivalences. Given such a pair
(L,a), Z is equivalent to the essential image of L. See [T}, 5.2.7].

A localization F' : € — 2 is also determined by the class of morphisms Sp :=
{f € €| F(f) is an equivalence}. The oco-category 2 is equivalent to the full
subcategory of ¥ spanned by the Sg-local objects, that is, objects X € % such
that

mapy (Z, X) = mapy (Y, X)

for any morphism f:Y — Z in Sp. Assuming that 4 has small colimits, the class
Sr is strongly saturated: it is closed under pushouts in €, closed under colimits
in €77, and has the 2-out-of-3 property. See [I, 5.5.4].

Let & be a presentable oco-category and S a set of morphisms. We denote S
the smallest strongly saturated class of morphisms which contains S. Let & be the
full subcategory of S-local objects. Then the inclusion 2 C % has a left adjoint
F : ¥ — 2 which defines an accessible localization, that is, a localization
such that 2 C ¥ is accessible. As a consequence, & is presentable. The class of
morphisms which become equivalences is exactly S, i.e., Sr = S. Every accessible
localization of € arises from a set of morphisms S in this way. See [1l 5.5.4].

2. LEFT EXACT LOCALIZATIONS

A localization F' : € — 2 is left exact if F' preserves finite limits. Assuming
that ¢ has finite limits, a localization F' is left exact if and only if the class Sg is
closed under pullbacks in % [Il, 6.2.1.1].

We may try to construct left exact accessible localizations as follows. Let € be
a presentable oco-category and S a set of morphisms. Let S denote the smallest
strongly saturated class in ¢" which is closed under pullbacks in ¢’ and contains S.
Then there is an accessible localization F' : ¢ — 2 such that Sy = S if and only
if S is generated by a set of morphisms as a strongly saturated class. Such a set
exists if colimits in % are universal and pullbacks commute with filtered colimits
1 6.2.1.2).

An oo-category 2 is an oco-topos if there exists a small oo-category C and
an accessible left exact localization P(C) — 2°. (P(C) := Fun(C°?,S) is the oo-
category of presheaves on C. S denotes the co-category of spaces.)
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3. DESCENT PROPERTIES

Let € be a presentable co-category and K a simplicial set. Consider two diagrams
p,q: K" =€

where 7 is a colimit diagram, and let @ : p — ¢ be a natural transformation whose

restriction o = @)k to K is cartesian, i.e., for each z — y in K, the square

p(x) ——p(y)

|

q(x) —q(y)
is a pullback. The oco-category ¥ satisfies descent if for all such quadruples
(K,Dp,q, @), the following hold:
(D1) If @ is cartesian, then p is a colimit diagram.
(D2) If p is a colimit diagram, then @ is cartesian.

The first property (D1) essentially says that colimits in € are universal (see [I,
Lemma 6.1.3.3]). This means that for each f : X — Y, the pullback functor
J* %)y — € x (which is a right adjoint) preserves colimits.

The second property (D2) says that the extension of a cartesian transformation
between K-diagrams to the colimit diagrams is again cartesian — a kind of “gluing”
property for cartesian transformations. Assuming (D1), property (D2) is satisfied
for all K if it is satisfied for pushouts [I} 6.1.3.5-6.1.3.9].

Example 1. It is a consequence of classical results that the oo-category S of spaces
satisfies descent. Property (D1) can be verified in the model category of simplicial
sets using the fact that it is right proper. Property (D2) follows from the classical
fact that a map of spaces is a quasifibration if it is a quasifibration locally.

It follows that P(C) satisfies descent for any small co-category C. The property of
descent is preserved under left exact localizations, therefore every co-topos satisfies
descent, too. See [Il, 6.1.3]. An analogous study of descent in the context of model
categories can be found in [2].

Example 2. Suppose that € satisfies (D1) and let (1 — X) be a pointed object
in €. Then the square
QX — X Vv X

|

1l— X
is a pullback square in €.

Example 3. The nerve of G, of a group defines a diagram in S indexed by N(A°P)
— this is a groupoid object in S. Moreover, Gy ~ A’. We may consider the
following simplicial model (‘décalage’) for the path space of |G,|, given by

EGe: N(AP?) = S, n]— [n+ 1] — Gpy1
together with the ‘last boundary’ projection a: EGe — G,. It is easy to see that

the natural transformation « is cartesian and therefore (D2) implies the well-known
equivalence G ~ Q|Gl,|.
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Example 4. The ordinary Grothendieck (1-)topos of sets satisfies property (D1).
On the other hand, it is easy to construct examples showing that (D2) is not satisfied
in this category in general. Therefore the category of sets is not an co-topos.

4. GIRAUD AXIOMS

Let ¥ be a presentable co-category which satisfies descent. In particular, it has
the following properties:

e Colimits in ¥ are universal. This is essentially a reformulation of the de-
scent property (D1). See [I], 6.1.3.3].

Example 5. Suppose that ¢ satisfies (D1) and let f: X — 0 be a mor-
phism to the initial object of 4. Since the functor f*: 6y — ¢, x preserves

both limits and colimits, it follows that f*(0 — 0) = (X — X) is a zero
object. It follows that X is an initial object in €.

e Coproducts ¥ are disjoint. This means that the squares

0 —X

|

Y— XUY

are pullbacks. This is a consequence of the property in Example [ and the
descent property (D2). See [1I, 6.1.3.19].

e Groupoids in ¥ are effective. A groupoid in % is a simplicial object
U, : N(A°P) — € such that

U, —— Us

| ]

Us —— Uy

is a pullback for all decompositions [n] = S US" with S NS = {s} (see
[1l Proposition 6.1.2.6]). A groupoid object U, is called effective if it can

be extended to a colimit diagram, given by an augmented simplicial object
Ut : N(AP) — €, such that

U —— U

| ]

Uy——U_;4
is a pullback. Note that such an augmented simplicial object is determined
by the morphism f : Uy — U_; by taking iterated pullbacks [I] Proposition
6.1.2.11]. This type of augmented simplicial object is called the Cech
nerve (of f). See [1], 6.1.2.7-6.1.2.15).

The fact that groupoids in & are effective is a consequence of descent
property (D2) — cf. Example See [1 6.1.3.19].

Conversely, these properties characterize co-topoi.

Theorem 6. Let 2" be an oo-category. The following are equivalent:
(1) Z is an co-topos.
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(2) & is a presentable oco-category and satisfies descent.
(3) & satisfies the following:

(a) Z is a presentable co-category.
(b) Colimits in & are universal.
(¢) Coproducts in 2 are disjoint.
(d) Groupoids in X are effective.

Proof. (Sketch) We sketched the proofs of (1) = (2) = (3). (3) = (1): Let Z"
be the small full subcategory of £  spanned by the x-compact objects. We may
choose k so that 2 is k-presentable and x-compact objects are closed under finite
limits — in particular, 2" contains the terminal object.

Then we obtain an accessible localization F' : P(Z™") — € and it suffices to show
that it is left exact. The restriction of F' along the Yoneda embedding j : 2™ —
P(Z") is left exact by construction. It is a consequence of (3)(b)—(d), that the
localization functor F' is then again left exact [I, Proposition 6.1.5.2]. Specifically,
using (3)(b), we can reduce this claim to showing that F' preserves pullbacks of the
form

(1) W ——=j(C)

-

i(C") ——

Since this holds when Z is representable (because j and F o j are left exact), it
suffices to show that the class of objects Z, for which these pullbacks are preserved,
is closed under colimits. We say that Z is good if F' preserves pullbacks as in
for any C,C’ € 2" — and, as a consequence of 3(b), F' preserves every pullback in
P(Z*) whose lower right corner is Z.

(3)(c) is used to show that the class of good objects is closed under coproducts.
(3)(d) is used to show that good objects are closed under coequalizers. We sketch
the argument in this case: suppose that

Uy =Up—U_

is a coequalizer where Uy is good. A morphism j(C) — U_; factors up to homotopy
through Uy — U_;. As a consequence, it is easy to see that it suffices to prove that
F preserves the pullback of (Uy — U_;1 < Up).

This last assertion is shown in [I, Proposition 6.1.4.2] and the proof is based on
the construction of free groupoids. In more detail, we may extend the coequalizer
diagram above to an augmented simplicial object V, using a left Kan extension.
Then there is a free groupoid W, generated by V, together with a universal
morphism of augmented simplicial objects V, — W, — the free groupoid is obtained
by a process of localization, given that the property of being a groupoid can be
expressed as the property of being local with respect to a set of morphisms. Using
the properties of this construction, we have:

(a) W, is a groupoid resolution (= colimit diagram associated to a groupoid
object) because V, is a simplicial resolution (= colimit diagram),

(b) the morphisms U_; ~V_; — W_; and Uy ~ Vi — Wy are equivalences [I],
Lemma 6.1.4.6].



co-TOPOI — 1 5

Therefore, the diagram

(2) W, —— WO

|

Wo ——W_4

is a pullback square (because groupoid objects in P(2™*) are effective), and we need
to show that F' sends this pullback to a pullback square in 2". Note that F(W,) is
a groupoid resolution (= colimit diagram associated to a groupoid object) because
F preserves colimits and Uy ~ Wy is good. Then the required result follows from
the property that groupoid objects in 2" are effective. ([

Remark 7. An analogous Giraud type characterization of higher topoi in the
context of model categories is shown in [3] 4.9.2].

5. CLASSIFYING OBJECTS

Suppose that € is a presentable co-category which satisfies (D1). Then (D2)
admits an equivalent reformulation in terms of classifying objects as follows.

Let S be a class of morphisms in 4" which is closed under pullbacks. We say that
a morphism p: E — B is a classifying object for S if every morphism f: X — Y
in S is a pullback of p along a unique classifying map c¢: Y — B. The question of
the existence of a classifying object for S is equivalent to the question whether the
following functor is representable:

Bg: €7 — S= oo-category of not-necessarily small spaces

Y — oo-groupoid of morphisms (X —Y) € S.

Using the adjoint functor theorem for presentable co-categories, this happens ex-
actly when Bg takes values in S and preserves small limits [I, Proposition 6.1.6.3].
The requirement that Bg preserves small limits is equivalent to (D2) for cartesian
transformations a:: p — ¢ whose components are in S.

Then the rough idea is that (D2) would hold if there is a universal morphism
p: E— B in € for the class of morphisms in %’. Some obvious size restrictions are
required to make the question of the existence of p meaningful:

Definition 8. We say that f: X — Y is relatively x-compact if for every pullback
diagram
X —X
]
Y ——Y
such that Y’ is k-compact, then X’ is also k-compact.
The class S, of relatively k-compact morphisms is closed under pullbacks. If & is
sufficiently large, then (D2) implies that there is a classifying object for relatively k-

compact morphisms [I, Proposition 6.1.6.7]. Conversely, if these classifying object
exist for all sufficiently large «, then ¥ satisfies (D2) [I, Theorem 6.1.6.8].
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