
∞-TOPOI – II

G. RAPTIS

1. Monomorphisms

Let C be an ∞-category. A morphism f : X → Z is a monomorphism if
for each object Y ∈ C/Z , the mapping space mapC/Z

(X,Y ) is either empty or

contractible. Equivalently, for any Y ∈ C , the map mapC (Y,X) → mapC (Y,Z)
is up to weak equivalence an inclusion of path components. Monomorphisms are
closed under pullbacks. A morphism f : X → Z is a monomorphism if and only if

the associated diagonal morphism ∆f : X
'−→ X ×Z X is an equivalence.

Let C be a presentable ∞-category and X ∈ C . We denote by Sub(X) the class
of equivalence classes of monomorphisms U → X. This is a small poset which is
locally presentable as an (ordinary) category [1, Proposition 6.2.1.3] – see Property
(c) below.

2. Digression: Truncated Objects

Monomorphisms are a special case of a truncated object. Let C be an ∞-
category and let k ≥ −1 be an integer. We say that X ∈ C is k-truncated if
mapC (Y,X) is k-truncated for every Y ∈ C , i.e., the homotopy groups of these
mapping spaces vanish in degrees > k (for all basepoints).

Example 1. (X → Z) ∈ C/Z is (–1)-truncated if and only if X → Z is a monomor-
phism in C .

Example 2. C is equivalent to (the nerve of) an ordinary category if and only if
every object in C is 0-truncated.

Let τ≤kC ⊆ C denote the full subcategory which is spanned by the k-truncated
objects. This has the following properties [1, 5.5.6]:

(a) The full subcategory τkC ⊆ C is closed under limits. This is a consequence
of the fact that k-truncated objects in the ∞-category of spaces are closed
under small products and pullbacks.

(b) Let F : C → C ′ be a left exact functor between ∞-categories which admit
finite limits. Then F preserves k-truncated objects.

More generally, F preserves k-truncated morphisms. We say that a
morphism f : X → Z is k-truncated if the homotopy fibers of the map
mapC (Y,X)→ mapC (Y, Z) are k-truncated for every Y ∈ C . For example,
X ∈ C is k-truncated if and only if the morphism (X → 1) is k-truncated.

We have the following useful observation: f : X → Z is k-truncated if
and only if the diagonal morphism ∆f : X → X ×Z X is (k− 1)-truncated
(Proof. Note that it suffices to prove the claim for the∞-category of spaces.
This can be shown using standard properties of homotopy groups.) Using
this fact, (b) follows by induction.
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(c) Suppose that C is a presentable ∞-category. Then the inclusion functor
τkC ⊆ C admits a left adjoint. This is because the k-truncated objects
are the local objects with respect to the morphisms C⊗∂∆k+2 → C⊗∆k+2

where C belongs to a set of objects that generate C under colimits. In
particular, τ≤kC is again presentable. We denote the localization functor
by

τC
≤k : C → τ≤kC .

(d) Let F : C → D be a functor between presentable ∞-categories. Suppose
that F preserves small colimits and finite limits. Then the following dia-
gram commutes up to canonical equivalence:

C

τC
≤k

��

F // D

τD
≤k

��

τ≤kC
F // τ≤kD .

This can be seen by noting that the associated diagram of right adjoints is
well–defined and commutes (this uses (b)).

3. Effective Epimorphisms

Let X be an ∞-topos. A morphism f : U → X is an effective epimorphism
if the Čech nerve Č(f) (= the augmented simplicial object which is defined by
iterated pullbacks along the morphism f) is a simplicial resolution of X (= a
colimit diagram).

We state some properties of effective epimorphisms in X [1, 6.2.3]. A morphism
f : U → X is an effective epimorphism if and only if f∗ : Sub(X) → Sub(U)
is injective. The class of effective epimorphisms contains the equivalences and
is closed under composition and coproducts. Furthermore, if gf is an effective
epimorphism, then so is g. A morphism f : U → X in is an equivalence if and
only if it is a monomorphism and an effective epimorphism (Proof. Č(f) is a
simplicial resolution of X which is constant at U if and only if f is an effective
epimorphism and a monomorphism.) In the ∞-category of spaces, a map is an
effective epimorphism if and only if it is π0-surjective.

Left exact colimit–preserving functors preserve effective monorphisms.

Proposition 3. Let X be an ∞-topos, f : V → X a morphism, V• the associated
Čech nerve, and let |V•| be the colimit of the underlying simplicial object. Then

V
p

//

f
��

|V•|

j
}}

X

is a factorization of f into an effective epimorphism p and a monomorphism j.
Moreover, j is the (–1)-truncation of f in X/X .
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Proof. The morphism p is an effective epimorphism because X is an ∞-topos and
therefore the underlying groupoid of V• is effective. Consider the pullback squares

Vn ×|V•| Vm //

��

Vn ×X Vm

��

V ×|V•| V // V ×X V

The bottom morphism is an equivalence since both objects are equivalent to V1.
Hence the top morphism is an equivalence for all m,n ≥ 0. As a consequence,

|V•| ' |V•| ×|V•| |V•|
'−→ |V•| ×X |V•| and therefore j is a monomorphism.

For every other monomorphism j′ : Ṽ → X that factors f , there is a homotopi-

cally unique factorization through |V•| provided by |V•| → |Č(j′)| ' Ṽ .
See [1, Proposition 6.2.3.4]. �

4. Topological Localizations

Let C be a presentable∞-category. A strongly saturated class S is called topo-
logical if: (a) it is generated as a strongly saturated class by monomorphisms, and
(b) it is closed under pullbacks. Note that the definition does not require that the
class is generated by a set of monomorphisms. But this is always true if colimits in
C are universal as then any monomorphism in S is the colimit of monomorphisms
in S whose codomains belong to a set of objects that generate C under colimits.
See [1, Proposition 6.2.1.5].

A localization F : C → D is called topological if the class of morphisms
SF = {f : X → Y | F (f) is an equivalence} is topological.

Proposition 4. Every topological localization F : P(C)→ D is accessible and left
exact.

Proof. F is accessible because the strongly saturated class SF is generated by a set
of morphisms. It is left exact because SF is closed under pullbacks. �

5. Grothendieck Topologies

Let C be an ∞-category. A sieve on C is a full subcategory U ⊆ C such that
if f : C → C ′ is in C and C ′ ∈ U , then f is in U . There is bijection between the
collection of sieves on C and the equivalence classes of (−1)-truncated object in P(C)
– there are presheaves on C whose values are either empty or contractible. More
specifically, given a (−1)-truncated presheaf F , the associated sieve is spanned by
the objects C ∈ C such that F (C) 6= ∅.

A sieve on C ∈ C is a sieve on the ∞-category C/C . Accordingly, there is a
bijection between the set of sieves on C and the set Sub(j(C)) of equivalence classes
of subobjects of the representable functor of C in P(C) – note that Sub(j(C)) is
identified with the equivalence classes of (−1)-truncated objects in P(C/C) using
the equivalence P(C/C) ' P(C)/j(C). See [1, Proposition 6.2.2.5].

A Grothendieck topology on C consists of a collection of sieves on C ∈ C for
each C, called covering sieves, such that:

(1) C/C ⊆ C/C is a covering sieve for each C.



4 G. RAPTIS

(2) Given f : D → C and a covering sieve U ⊆ C/C , then f∗U ⊆ C/D is a
covering sieve. Here f∗U is spanned by the objects (T → D) such that

(U → D
f−→ C) ∈ U .

(3) Given C ∈ C and a covering sieve U ⊆ C/C , a sieve U ′ ⊆ C/C is a covering
sieve if f∗U ′ is a covering sieve for each f : D → C in U .

There is a bijection between Grothendieck topologies on C and Grothendieck
topologies on the (ordinary) homotopy category h(C) (cf. [2]). This is because
the canonical functor h(C/C) → h(C)/C is full, and therefore it induces a bijection
between sieves on C ∈ C and sieves on C ∈ h(C).

Let (C, τ) be a small∞-category equipped with a Grothendieck topology denoted
by τ . Let Sτ denote the collection of monomorphisms U → j(C) in P(C) which
correspond to covering sieves. A presheaf F ∈ P(C) is called a sheaf (or τ-sheaf)
if it is Sτ -local, i.e., for every object C ∈ C and covering sieve U → j(C), the
canonical map

F (C) ' mapP(C)(j(C), F )→ mapP(C)(U,F ) ' lim(C′→C)∈UF (C ′)

is an equivalence. The full subcategory of τ -sheaves is denoted by Sh(C, τ).

Theorem 5. Let C be a small ∞-category.

(a) Let τ be a Grothendieck topology on C. Then Sh(C, τ) is a topological local-
ization of P(C).

(b) There is a bijection between Grothendieck topologies on C and equivalence
classes of topological localizations of P(C).

Proof. (Sketch) (a) We know that the localization of P(C) at Sτ is generated by
a set of monomorphisms. The proof that it is left exact is based on an explicit
construction of the localization functor. The localization functor (sheafification)
is given by a transfinite application of a functor (−)+ : F 7→ F+. More specifically,
for each presheaf F , the operation (−)+ replaces F (C), C ∈ C, by the colimit over
all covering sieves U ⊆ C/C of the limit of F restricted to U :

F+(C) ' colimU⊆C/C lim(C′→C)∈UF (C ′).

See [1, 6.2.2.8–6.2.2.13]. Since the collection of covering sieves is filtered under
reverse inclusion, the functor (−)+ : P(C)→ P(C) is left exact.

Setting U = C/C and (C
=−→ C) ∈ U in the formula above, we obtain a natural

transformation θ : id → (−)+ whose component at F ∈ P(C) is a morphism of
simplicial presheaves θF : F → F+. This is an Sτ -local equivalence [1, Proposition
6.2.2.14].

Iterating the operation F 7→ F+ sufficiently many times produces a τ -sheaf L(F )
together with an Sτ -local equivalence F → L(F ). Moreover, L : P(C)→ Sh(C, τ) is
again left exact because it is a filtered colimit of left exact functors. The (transfinite)
number of times the operation (−)+ must be applied in order to obtain a τ -sheaf
depends on the compactness ranks of the covering sieves – similarly to the standard
small object argument. See [1, proof of Proposition 6.2.2.7].

(b) Given a topological localization L : P(C)→ D , we say that a monomorphism
i : U → j(C) is a covering sieve (with respect to L) if L(i) is an equivalence. Since
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L preserves monomorphisms, the condition that i is a covering sieve is equivalent
to the condition that the morphism

τ≤0L(i) ' L(τ≤0(i))

is an isomorphism in τ≤0D . Using that the localization is left exact, it can be shown
that this collection of covering sieves defines a Grothendieck topology on C (or
h(C)). When D = Sh(C, τ) and L is the τ -sheafification functor, this Grothendieck
topology is exactly τ – since τ corresponds to the Grothendieck topology on h(C)
that is associated to the left exact localization P(hC) ' τ≤0P(C) L−→ τ≤0Sh(C, τ).
See [1, 6.2.2.17]. �

The next result identifies the ∞-category of sheaves Sh(C, τ) in terms of a uni-
versal property.

Proposition 6. Let C be a small∞-category equipped with a Grothendieck topology
τ and let L : P(C) → Sh(C, τ) be the associated accessible left exact localization.
Let X be an ∞-topos. Then the composition

Fun∗(Sh(C, τ),X )
L∗−−→ Fun∗(P(C),X )

j∗−→ Fun(C,X )

is fully faithful. Here Fun∗ denotes the ∞-category of left exact colimit-preserving
functors.

If C has finite limits, then f : C →X is in the essential image if and only if

(a) f is left exact, and
(b) for every collection {Cα → C}α which generates a covering sieve, the mor-

phism ⊔
α

f(Cα)→ f(C)

is an effective epimorphism.

Proof. (Sketch) The functor L∗ is fully faithful because L is a localization. j∗

is fully faithful as a consequence of the universal property of the ∞-category of
presheaves.

For the second part, suppose that the functor f : C → X is the restriction of

P(C) L−→ Sh(C, τ)
F−→ X . Since the Yoneda embedding is left exact, f is also left

exact, so (a) is satisfied. For (b), it suffices to show that⊔
α

L(j(Cα)→ L(j(C))

is an effective epimorphism – since F preserves effective epimorphisms. Consider
the factorization ⊔

α

j(Cα)
p−→ U

i−→ j(C)

into an effective epimorphism p and a monomorphism i. The morphism i corre-
sponds to the covering sieve that the collection {Cα → C} generates. Then L(p) is
an effective epimorphism and L(i) is an equivalence. The converse is similar. See
[1, 6.2.3.20]. �
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