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G. RAPTIS

1. MONOMORPHISMS

Let € be an oo-category. A morphism f : X — Z is a monomorphism if
for each object Y € %, the mapping space mapg, (X,Y) is either empty or
contractible. Equivalently, for any ¥ € €, the map map (Y, X) — map, (Y, Z)
is up to weak equivalence an inclusion of path components. Monomorphisms are
closed under pullbacks. A morphism f: X — Z is a monomorphism if and only if
the associated diagonal morphism Af: X =» X x; X is an equivalence.

Let € be a presentable co-category and X € . We denote by Sub(X) the class
of equivalence classes of monomorphisms U — X. This is a small poset which is
locally presentable as an (ordinary) category [Il, Proposition 6.2.1.3] — see Property
(¢) below.

2. DIGRESSION: TRUNCATED OBJECTS

Monomorphisms are a special case of a truncated object. Let ¢ be an oco-
category and let k > —1 be an integer. We say that X € ¥ is k-truncated if
mape (Y, X) is k-truncated for every Y € €, i.e., the homotopy groups of these
mapping spaces vanish in degrees > k (for all basepoints).

Example 1. (X — Z) € €z is (-1)-truncated if and only if X — Z is a monomor-
phism in .

Example 2. % is equivalent to (the nerve of) an ordinary category if and only if
every object in % is O-truncated.

Let 7<% C € denote the full subcategory which is spanned by the k-truncated
objects. This has the following properties [Il 5.5.6]:

(a) The full subcategory 7,4 C ¥ is closed under limits. This is a consequence
of the fact that k-truncated objects in the co-category of spaces are closed
under small products and pullbacks.

(b) Let F': € — €' be a left exact functor between oo-categories which admit
finite limits. Then F preserves k-truncated objects.

More generally, F' preserves k-truncated morphisms. We say that a
morphism f: X — Z is k-truncated if the homotopy fibers of the map
mape (Y, X) — map, (Y, Z) are k-truncated for every Y € €. For example,
X € € is k-truncated if and only if the morphism (X — 1) is k-truncated.

We have the following useful observation: f: X — Z is k-truncated if
and only if the diagonal morphism Af: X — X xz X is (k — 1)-truncated
(Proof. Note that it suffices to prove the claim for the co-category of spaces.
This can be shown using standard properties of homotopy groups.) Using
this fact, (b) follows by induction.
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(¢) Suppose that € is a presentable co-category. Then the inclusion functor
7% C ¢ admits a left adjoint. This is because the k-truncated objects
are the local objects with respect to the morphisms C @ 9AF 2 — C' @ Ak+2
where C belongs to a set of objects that generate ¥ under colimits. In
particular, 7<;% is again presentable. We denote the localization functor
by

T;’”&k: € — <16

(d) Let F': € — 2 be a functor between presentable co-categories. Suppose
that F preserves small colimits and finite limits. Then the following dia-
gram commutes up to canonical equivalence:

¢— 9

T kl JT< b

F
Tgkcg —_— Tgk@.

This can be seen by noting that the associated diagram of right adjoints is
well-defined and commutes (this uses (b)).

3. EFFECTIVE EPIMORPHISMS

Let 2" be an oo-topos. A morphism f : U — X is an effective epimorphism
if the Cech nerve C(f) (= the augmented simplicial object which is defined by
iterated pullbacks along the morphism f) is a simplicial resolution of X (= a
colimit diagram).

We state some properties of effective epimorphisms in 2" [I}, 6.2.3]. A morphism
f : U — X is an effective epimorphism if and only if f* : Sub(X) — Sub(U)
is injective. The class of effective epimorphisms contains the equivalences and
is closed under composition and coproducts. Furthermore, if gf is an effective
epimorphism, then so is g. A morphism f: U — X in is an equivalence if and
only if it is a monomorphism and an effective epimorphism (Proof. C(f) is a
simplicial resolution of X which is constant at U if and only if f is an effective
epimorphism and a monomorphism.) In the co-category of spaces, a map is an
effective epimorphism if and only if it is mp-surjective.

Left exact colimit—preserving functors preserve effective monorphisms.

Proposition 3. Let 2" be an co-topos, f:V — X a morphism, V, the associated
Cech nerve, and let |V,| be the colimit of the underlying simplicial object. Then

is a factorization of f into an effective epimorphism p and a monomorphism j.
Moreover, j is the (~1)-truncation of f in Z)x.
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Proof. The morphism p is an effective epimorphism because £ is an oo-topos and
therefore the underlying groupoid of V, is effective. Consider the pullback squares

Vi X|Va| Vin — = Va Xx Vi

J |

V><|V.|V4)VXXV

The bottom morphism is an equivalence since both objects are equivalent to V.
Hence the top morphism is an equivalence for all m,n > 0. As a consequence,
Vel =~ [Vl X|v, |Val =5 |Va| X x |Va| and therefore j is a monomorphism.

For every other monomorphism j’ : V — X that factors f, there is a homotopi-
cally unique factorization through |V, | provided by |Va| — |C(j')| ~ V.

See [II, Proposition 6.2.3.4]. O

4. TOPOLOGICAL LOCALIZATIONS

Let € be a presentable co-category. A strongly saturated class S is called topo-
logical if: (a) it is generated as a strongly saturated class by monomorphisms, and
(b) it is closed under pullbacks. Note that the definition does not require that the
class is generated by a set of monomorphisms. But this is always true if colimits in
% are universal as then any monomorphism in S is the colimit of monomorphisms
in S whose codomains belong to a set of objects that generate ¥ under colimits.
See [Il, Proposition 6.2.1.5].

A localization F' : € — 2 is called topological if the class of morphisms
Srp={f: X = Y| F(f) is an equivalence} is topological.

Proposition 4. Every topological localization F : P(C) — 2 is accessible and left
exact.

Proof. F is accessible because the strongly saturated class Sp is generated by a set
of morphisms. It is left exact because Sg is closed under pullbacks. (]

5. GROTHENDIECK TOPOLOGIES

Let C be an oo-category. A sieve on C is a full subcategory U C C such that
if f:C — C"isin C and C’ € U, then f is in U. There is bijection between the
collection of sieves on C and the equivalence classes of (—1)-truncated object in P(C)
— there are presheaves on C whose values are either empty or contractible. More
specifically, given a (—1)-truncated presheaf F', the associated sieve is spanned by
the objects C' € C such that F(C) # @.

A sieve on C € C is a sieve on the co-category C/c. Accordingly, there is a
bijection between the set of sieves on C' and the set Sub(j(C)) of equivalence classes
of subobjects of the representable functor of C' in P(C) — note that Sub(j(C)) is
identified with the equivalence classes of (—1)-truncated objects in P(C,¢) using
the equivalence P(C,c) ~ P(C)j(c)- See [I, Proposition 6.2.2.5].

A Grothendieck topology on C consists of a collection of sieves on C' € C for
each C| called covering sieves, such that:

(1) C)c € C/¢ is a covering sieve for each C.
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(2) Given f : D — C and a covering sieve U C C/¢, then f*U C C/p is a
covering sieve. Here f*U is spanned by the objects (T' — D) such that

wv-DLoyeu.
(3) Given C € C and a covering sieve U C C,¢, a sieve U’ C C/¢ is a covering
sieve if f*U’ is a covering sieve for each f: D — C in U.

There is a bijection between Grothendieck topologies on C and Grothendieck
topologies on the (ordinary) homotopy category h(C) (cf. [2]). This is because
the canonical functor h(C,c) — h(C) ¢ is full, and therefore it induces a bijection
between sieves on C € C and sieves on C € h(C).

Let (C, 7) be a small co-category equipped with a Grothendieck topology denoted
by 7. Let S, denote the collection of monomorphisms U — j(C) in P(C) which
correspond to covering sieves. A presheaf F' € P(C) is called a sheaf (or T-sheaf)
if it is S;-local, i.e., for every object C' € C and covering sieve U — j(C), the
canonical map

F(C) ~ mapp ) (j(C), F) = mappc (U, F) ~ limcrcyev F(C')
is an equivalence. The full subcategory of 7-sheaves is denoted by Sh(C, 7).

Theorem 5. Let C be a small oo-category.

(a) Let T be a Grothendieck topology on C. Then Sh(C, ) is a topological local-
ization of P(C).

(b) There is a bijection between Grothendieck topologies on C and equivalence
classes of topological localizations of P(C).

Proof. (Sketch) (a) We know that the localization of P(C) at S, is generated by
a set of monomorphisms. The proof that it is left exact is based on an explicit
construction of the localization functor. The localization functor (sheafification)
is given by a transfinite application of a functor (—)*: F — FT. More specifically,
for each presheaf F', the operation (—)* replaces F(C), C € C, by the colimit over
all covering sieves U C C/¢ of the limit of I restricted to U:

F+(C) >~ COthQC/C1im(C’~>C)eUF(C/)~

See [I, 6.2.2.8-6.2.2.13]. Since the collection of covering sieves is filtered under
reverse inclusion, the functor (—)*: P(C) — P(C) is left exact.

Setting U = C/¢ and (C — C) € U in the formula above, we obtain a natural
transformation 6: id — (—)" whose component at F € P(C) is a morphism of
simplicial presheaves 6 : F — F*. This is an S;-local equivalence [T, Proposition
6.2.2.14].

Iterating the operation F' — F'* sufficiently many times produces a 7-sheaf L(F)
together with an S;-local equivalence F' — L(F'). Moreover, L: P(C) — Sh(C,7) is
again left exact because it is a filtered colimit of left exact functors. The (transfinite)
number of times the operation (—)™ must be applied in order to obtain a 7-sheaf
depends on the compactness ranks of the covering sieves — similarly to the standard
small object argument. See [I, proof of Proposition 6.2.2.7].

(b) Given a topological localization L : P(C) — 2, we say that a monomorphism
i: U — j(C) is a covering sieve (with respect to L) if L(7) is an equivalence. Since
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L preserves monomorphisms, the condition that ¢ is a covering sieve is equivalent
to the condition that the morphism

T<oL(i) ~ L(7<0(7))

is an isomorphism in 7<¢%. Using that the localization is left exact, it can be shown
that this collection of covering sieves defines a Grothendieck topology on C (or
h(C)). When & = Sh(C, 1) and L is the 7-sheafification functor, this Grothendieck
topology is exactly 7 — since 7 corresponds to the Grothendieck topology on h(C)
that is associated to the left exact localization P(hC) ~ 7<oP(C) L T<oSh(C, 7).
See [1l 6.2.2.17]. 0

The next result identifies the oo-category of sheaves Sh(C, 7) in terms of a uni-
versal property.

Proposition 6. Let C be a small co-category equipped with a Grothendieck topology
7 and let L : P(C) — Sh(C,7) be the associated accessible left exact localization.
Let 2 be an oco-topos. Then the composition

Fun®(Sh(C, ), 2) < Fun*(P(C), Z) 5 Fun(C, 2)

1s fully faithful. Here Fun™ denotes the co-category of left exact colimit-preserving
functors.
If C has finite limits, then f:C — Z is in the essential image if and only if

(a) f is left exact, and
(b) for every collection {C, — C}o which generates a covering sieve, the mor-
phism

| ]f(Ca) = £(C)

is an effective epimorphism.

Proof. (Sketch) The functor L* is fully faithful because L is a localization. j*
is fully faithful as a consequence of the universal property of the oco-category of
presheaves.

For the second part, suppose that the functor f : C — 2 is the restriction of
P(C) EN Sh(C, 1) £, 2. Since the Yoneda embedding is left exact, f is also left
exact, so (a) is satisfied. For (b), it suffices to show that

| |LGi(Ca) = L(i(C))

is an effective epimorphism — since F' preserves effective epimorphisms. Consider
the factorization

| 3(Ca) 2 U 5 5(C)

into an effective epimorphism p and a monomorphism ¢. The morphism 4 corre-
sponds to the covering sieve that the collection {C,, — C'} generates. Then L(p) is
an effective epimorphism and L(4) is an equivalence. The converse is similar. See
[1 6.2.3.20]. O
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