
SEMINAR NOTES ON ∞-TOPOI

GEORGIOS RAPTIS

1. Preliminaries

A functor F : C → D between ∞-categories is a localization if it has a fully
faithful right adjoint G. Such an adjunction is determined by the endofunctor
L := GF : C → C and the natural transformation α : 1C → L which has the
property that L(αC), αL(C) : L(C) → L2(C) are equivalences. Given such a pair
(L,α), D is equivalent to the essential image of L. See [HTT, 5.2.7].

A localization F : C → D is also determined by the class of morphisms SF :=
{f ∈ C | F (f) is an equivalence}. The ∞-category D is equivalent to the full
subcategory of C spanned by the SF -local objects, that is, objects X ∈ C such
that

mapC (Z,X)
'−→ mapC (Y,X)

for any morphism f : Y → Z in SF . Assuming that C has small colimits, the class
SF is strongly saturated: it is closed under pushouts in C , it is closed under
colimits in C→, and has the 2-out-of-3 property. See [HTT, 5.5.4].

Let C be a presentable ∞-category and S a set of morphisms. We denote S
the smallest strongly saturated class of morphisms which contains S. Let D be the
full subcategory of S-local objects. Then the inclusion D ⊆ C has a left adjoint
F : C → D which is a localization. As a consequence, D is presentable. The class
of morphisms which become equivalences is exactly S, i.e., SF = S. Lastly, every
accessible localization of C arises from a set of morphisms S in this way. See [HTT,
5.5.4].

2. Left exact localizations

A localization F : C → D is left exact if F preserves finite limits. Assuming
that C has finite limits, a localization F is left exact if and only if the class SF is
closed under pullbacks in C [HTT, 6.2.1.1].

We can try to construct left exact accessible localizations as follows. Let C be

a presentable ∞-category and S a set of morphisms. Let S̃ denote the smallest
strongly saturated class in C which is closed under pullbacks in C and contains S.

Then there is an accessible localization F : C → D such that SF = S̃ if and only

if S̃ is generated by a set of morphisms as a strongly saturated class. Such a set
exists if colimits in C are universal and pullbacks commute with filtered colimits
[HTT, 6.2.1.2].

An ∞-category X is an ∞-topos if there exists a small ∞-category C and
an accessible left exact localization P(C) → X . (P(C) := Fun(Cop,S) is the ∞-
category of presheaves on C. S denotes the ∞-category of spaces.)
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2 G. RAPTIS

3. Descent Properties

Let C be a presentable ∞-category and K a simplicial set. Consider two diagrams

p, q : K. → C

where q is a colimit diagram, and α : p → q a natural transformation whose
restriction α = α|K to K is cartesian, i.e. for each x→ y in K, the square

p(x) //

��

p(y)

��

q(x) // q(y)

is a pullback. The ∞-category C satisfies descent if for all such quadruples
(K, p, q, α), the following hold:

(D1) If α is cartesian, then p is a colimit diagram.
(D2) If p is a colimit diagram, then α is cartesian.

The first property (D1) says that colimits in C are universal. The second prop-
erty (D2) says that the extension of a cartesian transformation to the colimit dia-
grams is again cartesian - a kind of “gluing” property for cartesian transformations.

It is a consequence of classical results that the ∞-category S of spaces satisfies
descent. From this follows that P(C) satisfies descent for any small ∞-category C.
The property of descent is preserved under left exact localizations, therefore every
∞-topos satisfies descent too. See [HTT, 6.1.3]. An analogous study of descent in
the context of model categories can be found in [T&HT].

4. Giraud Axioms

Let C be a presentable ∞-category which satisfies descent. In particular, it has
the following properties:

• Colimits in C are universal. This means that for each f : X → Y , the
pullback functor f∗ : C/Y → C/X preserves colimits. This is a consequence
descent property (D1). See [HTT, 6.1.3.3].
• Coproducts C are disjoint. This means that the squares

0 //

��

X

��

Y // X t Y
are pullbacks. This is a consequence of the descent properties (D1) and
(D2). See [HTT, 6.1.3.19].
• Groupoids in C are effective. A groupoid in C is a simplicial object
U• : N(∆op)→ C such that

Un //

��

US

��

US′ // U0

is a pullback for all decompositions [n] = S ∪ S′ with S ∩ S′ = {s}. A
groupoid object U• is called effective if it can be extended to a colimit
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diagram, given by an augmented simplicial object U+
• : N(∆op

+ )→ C , such
that

U1
//

��

U0

��

U0
// U−1

is a pullback. Note that then the simplicial object is determined from
the morphism f : U0 → U−1 by taking iterated pullbacks. This type of
augmented simplicial object is called the Čech nerve of f . See [HTT,
6.1.2.7-6.1.2.15].

The fact that groupoids in C are effective is a consequence of descent
property (D2). See [HTT, 6.1.3.19].

Conversely, these properties characterize ∞-topoi.

Theorem 1. Let X be an ∞-category. The following are equivalent:

(1) X is an ∞-topos.
(2) X is a presentable ∞-category and satisfies descent.
(3) X satisfies the following:

(a) X is a presentable ∞-category.
(b) Colimits in X are universal.
(c) Coproducts in X are disjoint.
(d) Groupoids in X are effective.

Proof. (3) ⇒ (1): Let Xκ be the small full subcategory of X spanned by the
κ-compact objects. We may choose κ so that X is κ-presentable and κ-compact
objects are closed under pullbacks. Then we have an accessible localization F :
P(Xκ) → C and it suffices to show that it is left exact. By assumption, the
restriction of F along the Yoneda embedding j : Xκ ↪→ P(Xκ) is left exact by
construction. It is a consequence of (3)(b)-(d), that the localization functor is
again left exact. Using (3)(b), we can reduce this claim to showing that F preserves
pullbacks of the form

W //

��

j(C)

��

j(C ′) // Z

Since this holds when Z is representable, it suffices to show that the class of objects
Z for which this holds is closed under colimits. (3)(c) is used to show that it is closed
under coproducts and (3)(d) is used to show that it is closed under coequalizers. See
[HTT, 6.1.5.2-6.1.5.3]. An analogous Giraud-type characterization in the context
of model categories is shown in [HAGI, 4.9.2]. �

5. Monomorphisms and Effective Epimorphisms

Let C be an ∞-category. A morphism f : X → Z is a monomorphism if
for each object Y ∈ C/Z , the mapping space mapC/Z

(X,Y ) is either empty or

contractible. Equivalently, for any Y ∈ C , the map mapC (Y,X) → mapC (Y,Z)
is up to weak equivalence an inclusion of path components. Monomorphisms are
closed under pullbacks. A morphism f : X → Z is a monomorphism if and only if

X
'−→ X ×Z X.
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Let C be a presentable ∞-category and X ∈ C . Let Sub(X) denote the class
of equivalence classes of monomorphisms U → X. This is a (small) poset which is
locally presentable as an (ordinary) category. See [HTT, 6.2.1.3].

Let X be an ∞-topos. A morphism f : U → X is an effective epimorphism
if the Čech nerve Č(f), i.e. the augmented simplicial object which is defined by
iterated pullbacks along the morphism f , is a simplicial resolution of X, i.e. a
colimit diagram.

A morphism f : U → X is an effective epimorphism if and only if f∗ : Sub(X)→
Sub(U) is injective. The class of effective epimorphisms contains the equivalences,
it is closed under composition, and it is closed under coproducts. Furthermore, if
gf is an effective epimorphism, then so is g. A morphism is an equivalence if and
only if it is a monomorphism and an effective epimorphism. Left exact colimit-
preserving functors preserve effective monorphisms. In the ∞-category of spaces, a
map is an effective epimorphism if and only if it is 0-connected. See [HTT, 6.2.3].

Proposition 2. Let X be an ∞-topos, f : V → X a morphism, V• the associated
Čech nerve, and |V•| the colimit of the underlying simplicial object. Then

V
p

//

f
��

|V•|

j
}}

X

is a factorization of f into an effective epimorphism p and a monomorphism j.
Moreover, j is the (-1)-truncation of f in X/X .

Proof. The morphism p is an effective epimorphism because X is an ∞-topos and
therefore the underlying groupoid of V• is effective. Consider the pullback squares

Vn ×|V•| Vm //

��

Vn ×X Vm

��

V ×|V•| V // V ×X V

The bottom morphism is an equivalence since both objects are equivalent to V1.
Hence the top morphism is an equivalence for all m,n ≥ 0. As a consequence,

|V•| ' |V•| ×|V•| |V•|
'−→ |V•| ×X |V•| and therefore j is a monomorphism. For every

other monomorphism j′ : Ṽ → X that factors f , there is a homotopically unique

factorization through |V•| provided by |V•| → |Č(j′)| ' Ṽ . See [HTT, 6.2.3.4]. �

6. Topological Localizations

Let C be a presentable∞-category. A strongly saturated class S is called topo-
logical if: (a) it is generated as a strongly saturated class by monomorphisms, and
(b) it is closed under pullbacks. Note that the definition does not require that the
class is generated by a set of monomorphisms. But this is always true if colimits in
C are universal as then any monomorphism in S is the colimit of monomorphisms
in S whose codomains belong to a set of objects that generate C under colimits.
See [HTT, 6.2.1.5].

A localization F : C → D is called topological if the class of morphisms SF is
topological.
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Proposition 3. Every topological localization F : P(C)→ D is accessible and left
exact.

7. Grothendieck Topologies

Let C be an ∞-category. A sieve on C is a full subcategory U ⊆ C such that
if f : C → C ′ is in C and C ′ ∈ U , then f is in U . There is bijection between
the collection of sieves on C and the equivalence classes of (−1)-truncated object in
P(C). Given a (−1)-truncated presheaf F , the associated sieve is spanned by the
objects C ∈ C such that F (C) 6= ∅.

A sieve on C ∈ C is a sieve on the ∞-category C/C . Accordingly, there is
a bijection between the collection of sieves on C and Sub(j(C)), the equivalence
classes of subobjects of the representable functor of C in P(C) - this is the same as
equivalence classes of (−1)-truncated objects in P(C/C). See [HTT, 6.2.2.5].

A Grothendieck topology on C consists of a collection of sieves on C ∈ C for
each C, called covering sieves, such that:

(1) C/C ⊆ C/C is a covering sieve for each C.
(2) Given f : D → C and a covering sieve U ⊆ C/C, then f∗U ⊆ C/D

is a covering sieve. (f∗U is spanned by the objects T → D such that

(U → D
f−→ C) ∈ U .)

(3) Given C ∈ C and a covering sieve U ⊆ C/C, a sieve U ′ ⊆ C/C is covering
if f∗U ′ is a covering sieve for each f : D → C in U .

There is a bijection between Grothendieck topologies on C and Grothendieck
topologies on the (ordinary) homotopy category hC. This is because the canonical
functor h(C/C)→ h(C)/C is full and therefore it induces a bijection between sieves
on C ∈ C and sieves on C ∈ h(C).

Let (C, τ) be a small∞-category equipped with a Grothendieck topology, denoted
by τ . Let Sτ denote the collection of monorphisms U → j(C) in P(C) which
correspond to covering sieves. A presheaf F ∈ P(C) is called a sheaf if it is Sτ -
local. The full subcategory of sheaves is denoted by Sh(C, τ).

Theorem 4. Let C be a small ∞-category.

(a) Let τ be a Grothendieck topology on C. Then Sh(C, τ) is a topological local-
ization of P(C).

(b) There is a bijection between Grothendieck topologies on C and equivalence
classes of topological localizations of P(C).

Proof. (a) The localization functor is given by sheafification: for each presheaf F ,
the sheafification LF is given by a transfinite application of an operation F 7→ F+

which replaces F (C), C ∈ C, with the colimit over all covering sieves U ⊆ C/C of
the limit of F restricted to U . The number of times this operation must be applied
depends on the homotopical sizes of the covering sieves. This is analogous to the
definition of sheafification in ordinary topos theory. There is a canonical natural
transformation F → F+ which is an Sτ -local equivalence. The sheafification functor
is left exact because the collection of covering sieves is closed under intersections.
See [HTT, 6.2.2.7].

(b) The inverse is defined as follows: given a topological localization F : P(C)→
D , a monomorphism U → j(C) is defined to be (or corresponds to) a covering sieve
if it is in SF . This defines a Grothendieck topology because the localization is left
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exact. When D = Sh(C, τ), this Grothendieck topology is exactly τ . See [HTT,
6.2.2.17]. �

The next result identifies the universal property of the ∞-category of sheaves
Sh(C, τ).

Proposition 5. Let C be a small∞-category equipped with a Grothendieck topology
τ and L : P(C) → Sh(C, τ) the associated accessible left exact localization. Let X
be an ∞-topos. Then the composition

Fun∗(Sh(C, τ),X )
L∗−−→ Fun∗(P(C),X )

j∗−→ Fun(C,X )

is fully faithful. Here Fun∗ denotes the ∞-category of left exact colimit-preserving
functors.

If C has finite limits, then f : C →X is in the essential image if and only if

(a) f is left exact, and
(b) for every collection {Cα → C}α which generates a covering sieve, the mor-

phism ⊔
α

f(Cα)→ f(C)

is an effective epimorphism.

Proof. The functor L∗ is well-defined because L is left exact. It is fully faithful
because L is a localization. j∗ is fully faithful because it is the restriction of the
equivalence between all colimit-preserving functors P(C) → X and functors C →
X - by the universal property of the ∞-category of presheaves. See [HTT, 5.1.5
and 5.2.7.12].

For the second part, suppose that f : C → X is the restriction of P(C) L−→
Sh(C, τ)

F−→ X . Since the Yoneda embedding is left exact, f is also left exact so
(a) is satisfied. For (b), it suffices to show that⊔

α

L(j(Cα)→ L(j(C))

is an effective epimorphism - since F preserves effective epimorphisms. Consider
the factorization ⊔

α

j(Cα)
p−→ U

i−→ j(C)

into an effective epimorphism p and a monomorphism i. Then i can be identified
with the covering sieve that the collection {Cα → C} generates. Then L(p) is an
effective epimorphism and L(i) is an equivalence.

The converse is similar.
See [HTT, 6.2.3.20]. �

8. Is every ∞-topos an ∞-category of sheaves?

Let X be an ∞-topos. We may choose κ so that X is κ-presentable and the
full subcategory Xκ of κ-compact objects is closed under pullbacks. Then there is
a left exact accessible localization F : P(Xκ) → X . We can consider the largest
Grothendieck topology on Xκ which is compatible with this localization: a sieve
on C ∈ Xκ, U → j(C), is covering if F (U) → F (j(C)) is an equivalence in X .
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This defines a Grothendieck topology τF on Xκ - it is an example of a canonical
topology [HTT, 6.2.4]. Moreover, F descends to the ∞-category of sheaves,

P(Xκ)

F

$$

L

��

Sh(C, τF )
F̄ // X

but unlike the case of ordinary Grothendieck topoi (or n-topoi for n < ∞), the
induced functor F̄ is not an equivalence in general.

Since F̄ is left exact, it induces a functor on the full (reflective) subcategories of
k-truncated objects, for −1 ≤ k <∞,

P(Xκ)≤k � Sh(Xκ, τF )≤k
F̄≤k

� X≤k.

Recall that an object X in an ∞-category C is k-truncated if for each A in C,
the space mapC(A,X) has trivial homotopy groups in degrees larger than k for
each basepoint. A presheaf F ∈ P(C) is k-truncated if and only if its values are
k-truncated spaces. See [HTT, 5.5.6].

The induced functor F̄≤k is an equivalence, i.e. the ∞-categories of k-truncated
objects X≤k, are equivalent to∞-categories of k-truncated objects in∞-categories
of sheaves. To see this, we show inductively that if f : X → Y is l-truncated,
i.e. the homotopy fibers of mapC(A,X) → mapC(A, Y ) are l-truncated for all A,
and F̄ (f) is an equivalence, then f is an equivalence. For l = −1, i.e. when f is
a monomorphism, this is true by construction. For the inductive step, note that
f is l-truncated if and only if X → X ×Y X is (l − 1)-truncated. If F̄ (f) is an
equivalence, then F̄ (X → X ×Y X) is an equivalence, since F̄ is left exact. Hence,
by the inductive assumption, X → X ×Y X is an equivalence, which implies that
f is an equivalence. See [HTT, 6.4.1.6].

The ∞-category X≤k is a (k + 1)-topos - this can be used as a definition.
There are several different characterizations of n-topoi, for 0 ≤ n <∞, including a
Giraud-type characterization similar to Theorem 1. See [HTT, 6.4.1.5].

9. Homotopy groups and Hypercompetions

Let X be an ∞-topos and X ∈X . There is an associated object XSn

together
with a morphism s : XSn → X given by “evaluation” at the basepoint of Sn. XSn

is specified by the property that mapX (Y,XSn

) ' map(Sn,mapX (Y,X)) for all
Y ∈ X . The n-th homotopy group πn(X) of X is the 0-truncation τ≤0(s) in
the ∞-category X /X. This is a group object if n > 0 and commutative if n > 1.
More generally, it is possible to define relative homotopy groups and obtain long
exact sequences as in the classical context of topological spaces. In fact, if X = S
and x : ∗ → X is a basepoint, then x∗(πn(X)) is πn(X,x). Homotopy groups are
preserved along geometric morphisms, i.e. left exact left adjoints, because these
preserve truncated objects. See [HTT, 6.5.1].

If an object X ∈ X is n-truncated, then πk(X) ' ∗ for all k > n. Moreover, if
n ≥ 0 and πn(X) ' ∗, then X is (n− 1)-truncated. See [HTT, 6.5.1.7].

A morphism f : X → Y in X is n-connective, 0 ≤ n ≤ ∞, if it is an
effective epimorphism and πk(f) ' ∗ for 0 ≤ k ≤ n. A morphism f : X → Y
is n-connective if and only if X → X ×Y X is (n − 1)-connective and f is an
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effective epimorphism. See [HTT, 6.5.1.16-6.5.1.18]. An n-truncated ∞-connective
morphism is an equivalence.

The classW∞ of∞-connective morphisms is a strongly saturated class generated
by a set of morphisms. This is because it can be specified by accessible conditions.
See [HTT, 6.5.2.8]. Furthermore, it is closed under pullbacks. An object X ∈ X
is hypercomplete if it is W∞-local. This is equivalent to saying that X satisfies
descent with respect to the hypercoverings [HTT, 6.5.3.13], i.e. X is local with
respect to the morphisms {|U•| → X} for each hypercovering U• in X /X. See
[HTT, 6.5.3] - a discussion of the comparison between descent with respect to
coverings and hypercoverings can be found in [HTT, 6.5.4].

The full subcategory of hypercomplete objects X ∧ ⊆ X admits a left exact
accessible localization, called hypercompletion, X → X ∧ and therefore X ∧ is
again an∞-topos. X is hypercomplete if X = X ∧. X ∧ is hypercomplete. The
local model structure on simplicial presheaves due to Jardine [Jar], where the weak
equivalences between simplicial presheaves are detected by the sheaves of homotopy
groups, is hypercomplete. See [HTT, 6.5.2.14].

Proposition 6. Let X be an ∞-topos, (C, τ) a small ∞-category equipped with a
Grothendieck topology τ , and F : Sh(C, τ) → X a left exact localization. Suppose
that for every monomorphism u in Sh(C, τ), if F (u) is an equivalence in X , then
u is an equivalence in Sh(C, τ). Then for every morphism u ∈ Sh(C, τ), if F (u) is
an equivalence in X , then u is ∞-connective in Sh(C, τ).

Proof. This is a special case of [HTT, 6.5.2.16]. Let u : X → Z be a morphism
such that F (u) is an equivalence. Using Proposition 2, we can find a factorization

X
p→ U

i→ Z

where p is an effective epimorphism and i is a monomorphism. It follows that F (i)
is an effective epimorphism and therefore an equivalence. Hence i is an equivalence,
which implies that u is an effective epimorphism.

Proceeding by induction, suppose that for every morphism u : X → Z in
Sh(C, τ), if F (u) is an equivalence, then u is (n − 1)-connective. For such a mor-
phism u, the morphism F (X → X ×Z X) is an equivalence, since F is left exact.
Then X → X ×Z X is (n− 1)-connective and therefore u is n-connective, too. �

Combined with the discussion in Section 8, Theorem 6 implies that every ∞-
topos is obtained from an ∞-category of sheaves by a left exact accessible localiza-
tion at a collection of∞-connective morphisms - this is a cotopological localization
[HTT, 6.5.2.17]. The terminal such localization is given by the hypercompletion
Sh(C, τ)∧.

Theorem 7. Let C be a small ∞-category. There is a bijective correspondence
between Grothendieck topologies on C and hypercomplete left exact accessible local-
izations of P(C).

Proof. This is proved in [HAGI, 3.8.3] in the context of model categories. The
bijective correspondence is analogous to the one in Theorem 4. �

As a consequence of Theorems 4 and 7, if Sh(C, τ) is not hypercomplete, then
Sh(C, τ)∧ is not a topological localization of P(C).
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