
DIFFERENTIATION OF FUNCTORS:

INTRODUCTION TO GOODWILLIE CALCULUS

G. RAPTIS

1. Recollections

Let C be an ∞-category with finite limits. The ∞-category Sp(C ) of spec-
trum objects in C is the ∞-category of reduced excisive functors

Sp(C ) = Exc∗(Sfin
∗ ,C ).

We recall that a functor F : Sfin
∗ → C is reduced (resp. excisive) if F preserves

the terminal object (resp. F sends pushouts to pullbacks). We have a canonical
equivalence Sp(C ) ' Sp(C∗) where C∗ = C∗/ is the associated pointed ∞-category
of pointed objects in C . The equivalence holds because the values of a reduced
excisive functor F : Sfin

∗ → C are canonically pointed.

The ∞-category Sp(C ) is stable. Note that for every F ∈ Sp(C ), there is
a canonical equivalence F (S0) ' ΩnF (Sn) for any n ≥ 0. There is a functor
Ω∞ : Sp(C ) → C , F 7→ F (S0). The functor Ω∞ is an equivalence if and only if C
is stable.

The stable ∞-category Sp(C ) has the following universal property of stabi-
lization: for any pointed∞-category D with finite colimits, there is an equivalence

(Ω∞ ◦ −) : Exc∗(D ,Sp(C ))
'→ Exc∗(D ,C ).

The construction C 7→ Sp(C ) is functorial in the following sense: given a left
exact functor f : C → C ′ between pointed ∞-categories with finite limits, then
composition with f defines a functor

Sp(f) : Sp(C )→ Sp(C ′)

such that the following diagram commutes

Sp(C )
Sp(f)

//

Ω∞
C

��

Sp(C ′)

Ω∞
C′

��

C
f

// C ′.

Moreover, by the universal property of Sp(−), the functor Sp(f) is essentially
unique.

Question: What can we say when f : C → C ′ is not left exact?
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2. The (First) Excisive Approximation

We make the following assumptions which apply througout this section:

(1) D is a differentiable ∞-category (= D has finite limits, sequential col-
imits, and these commute with each other, e.g., an ∞-topos or a stable
∞-category).

(2) C is an ∞-category with finite colimits and a terminal object ∗.
Let Exc(C ,D) denote the ∞-category of excisive functors from C to D – regarded
as a full subcategory of Fun(C ,D).

Theorem 1. There is an adjunction

P1 : Fun(C ,D) � Exc(C ,D) : incl.

Moreover, the functor P1 is left exact.

Definition of the functor P1. We first consider the functor Fun(C ,D)
T1−→ Fun(C ,D)

which is defined on objects F ∈ Fun(C ,D) and X ∈ C by

(T1F )(X) = pullback of (F (∗)→ F (ΣX)← F (∗)).

There is a natural transformation θF : F → T1F which is defined by the canon-
ical map to the pullback. Note that θF is an equivalence if F is already exci-
sive. Even though T1F need not be excisive, the idea is that T1F functions as a
first approximate stage towards turning F into an excisive functor. The functor
T1 : Fun(C ,D)→ Fun(C ,D) is left exact because it is given by a limit of left exact
functors.
The natural transformation θF is also natural in F , so we obtain a natural trans-
formation θ : id→ T1(−). Then we define:

P1F = colim(F
θF−−→ T1F

θT1F−−−→ T1(T1F )
θ...−−→ · · · ).

(Note that we have used θT1F instead of T1(θF )!) Then the resulting functor
P1 : Fun(C ,D)→ Fun(C ,D) is again left exact because it is a sequential colimit of
left exact functors and D is differentiable by assumption. This proves the second
claim of Theorem 1.

Proposition 2. Let F : C → D be a functor.

(1) Let X denote a pushout diagram in C :

X∅

��

// X1

��

X0
// X01.

Then the morphism of squares in D

θF (X) : F (X)→ T1F (X)

factors through a pullback square.
(2) P1F is excisive.

(3) P1(θF ) : P1(F )
'−→ P1(T1F ).

(4) P1(F )
'−→ P1(P1F ).
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Proof. (1) θF (X) factors through the following pullback square Y:

Y∅

��

// F (X1)

��

F (X0) // F (X01).

The morphism F (X)→ Y is the canonical morphism to the pullback. Three of the
components of the morphism Y → T1F (X) are defined by the natural transforma-
tion θ.

The morphism Y∅ → T1F (X∅) is defined as follows: first consider the canonical
morphism of squares from X to the pushout square,

X∅

��

// ∗

��

∗ // ΣX∅,

then apply F , and take pullbacks in D . To see that this defines the required
morphism of squares, note that each component of the morphism Y→ T1F (X) can
also be described naturally in this way (i.e., as induced by a suitable morphism
of pushouts after applying F and taking pullbacks), so we obtain a well–defined
factorization of θF (X).

(2) For any pushout square X in C , the square P1F (X) is a sequential colimit of
morphisms of squares, and each of these morphisms factors through a pullback
square by (1). As a consequence, by cofinality, P1F (X) is the sequential colimit of
pullback squares in D . This is again a pullback since D is differentiable.

(3) We have the following composition of equivalences:

P1F (−) ' lim
(
P1(F )

(
∗ → Σ(−)← ∗

))
' lim

(
P1

(
cF (∗) → F (Σ(−))← cF (∗)

))
' P1

(
T1F (−)

)
where cF (∗) denotes the constant functor at F (∗) – the first equivalence uses that
P1F is excisive, the second equivalence can be verified directly, and the third equiv-
alence uses that P1 is left exact. (4) follows immediately from (3).

See [GoIII, Section 1], [LuHA, 6.1.1]. �

Proof of Theorem 1. It remains to show that P1 : Fun(C ,D) → Exc(C ,D) is
a localization. Let φF : F → P1F be the natural transformation induced by θ.
Proposition 2(2) implies that

φP1F : P1F
'−→ P1P1F.

According to Proposition 2(4), we also have that P1(φF ) : P1(F )
'−→ P1(P1F ). Then

the required result follows. See [GoIII, Section 1], [LuHA, 6.1.1]. �

P1F is the (1–)excisive approximation to F . Theorem 1 is the main result of
[GoIII, Section 1] [LuHA, 6.1.1] in the case n = 1 – see also [GoI, Section 1].

Example. Let F : Sfin
∗ → S be a functor. The excisive approximation P1F is not

reduced in general. Let P0F : Sfin
∗ → S denote the constant functor at F (∗). There



4 G. RAPTIS

is a natural transformation P1F → P0F . The fiber of this natural transformation is
a reduced excisive functor D1F ∈ Exc∗(Sfin

∗ ,S∗) = Sp(S∗) – the differential of F .
For example, if F is the inclusion functor, then D1F ' P1F ' colimn→∞ΩnΣn(−).

3. Differentiation of Functors

Definition 3. Let F : C → D be a functor between∞-categories with finite limits.
A pair (f : Sp(C ) → Sp(D), α : F ◦ Ω∞C → Ω∞D ◦ f) is called a derivative of F if
the following are satisfied:

(a) f is exact.
(b) For every exact functor g : Sp(C ) → Sp(D), the map between mapping

spaces in the respective ∞-categories of functors:

map(f, g)
(Ω∞

D ?−)◦α−−−−−−−→ map(F ◦ Ω∞C ,Ω
∞
D ◦ g)

is an equivalence.

In other words, α exhibits f as the closest approximation to a factorization of
F ◦ Ω∞C through Ω∞D .

Example. Let F : C → D be a left exact functor between ∞-categories with
finite limits. Then the induced functor Sp(F ) : Sp(C ) → Sp(D) together with the
canonical equivalence F ◦ Ω∞C ' Ω∞D ◦ Sp(F ) is the derivative of F – in this case,
property (b) essentially states the universal property of Sp(−).

Let C be an ∞-category with finite limits and let D be a differentiable ∞-
category. Let F : C → D be a reduced functor. The functor P1 of Theorem 1
restricts to the ∞-categories of reduced functors:

P1 : Fun∗(Sp(C ),D)→ Exc∗(Sp(C ),D).

We denote by F ′ : = P1(F ◦ Ω∞C ) the excisive approximation to F ◦ Ω∞C – this
is also the differential of F ◦ Ω∞C . Furthermore, let α′ : F ◦ Ω∞C → F ′ denote the
canonical natural transformation. There is an (essentially) unique exact functor
f : Sp(C )→ Sp(D) that corresponds to F ′ under the equivalence:

Exc∗(Sp(C ),Sp(D))
'−→ Exc∗(Sp(C ),D).

The natural transformation α′ defines a natural transformation α : F ◦Ω∞C → Ω∞D ◦f .
Then Theorem 1 implies:

Proposition 4. (f, α) is a derivative of F .

We denote the derivative f : Sp(C ) → Sp(D) of a reduced functor F : C → D
by ∂F .

Explicit Description of the Derivative: Based on the construction of the functor P1,
the derivative f : Sp(C ) → Sp(D) of the reduced functor F : C → D is identified
with the composite functor

Sp(C )
iC =incl−−−−−→ Fun∗(Sfin

∗ ,C )
F+=(F◦−)−−−−−−−→ Fun∗(Sfin

∗ ,D)
Ls

D−−→ Sp(D)

where LsD denotes the left adjoint of the inclusion functor iD – this is just a special
case of the functor P1. We have canonical equivalences for any X ∈ Fun∗(Sfin

∗ ,D):

Ω∞D L
s
D(X) ' colimn→∞ΩnX(Sn) and LsD(X)(−) ' colimn→∞ΩnX(Σn(−)).
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Theorem 5 (Chain Rule). Let C
F−→ D

G−→ E be reduced functors between ∞-
categories with finite limits. Suppose that D and E are differentiable and that G
preserves sequential colimits. Then there is a canonical identification:

∂(G ◦ F ) ' ∂G ◦ ∂F : Sp(C )→ Sp(E ).

Proof. See [LuHA, 6.2.1.22–6.2.1.24]. Using the description of the derivative given
above, we need to show that the canonical morphism:

Ω∞E ◦ ∂(G ◦ F ) ' Ω∞E L
s
EG

+F+iC → Ω∞E L
s
EG

+iDL
s
DF

+iC ' Ω∞E ◦ ∂(G) ◦ ∂(F )

is an equivalence of functors. It suffices to prove that

(1) LsEG
+ '−→ LsEG

+iDL
s
D .

In other words, we claim that for every X ∈ Fun∗(Sfin
∗ ,D), the natural morphism

(= unit map):
ηX : X → (iDL

s
D)(X)

becomes an equivalence after applying LsEG
+. The natural morphism (in X)

Ω∞E L
s
EG

+(X)

'
��

// Ω∞E L
s
EG

+(iDL
s
D(X))

'
��

colimn→∞ΩnG(X(Sn)) // colimn,m→∞ΩnG(ΩmX(Sm+n))

admits a natural retraction up to equivalence, induced by G ◦ ΩD → ΩE ◦G,

Ω∞E L
s
EG

+(iDL
s
D(X))

'
��

Ω∞E L
s
EG

+(X)

'
��

colimn,m→∞ΩnG(ΩmX(Sm+n)) // colimn,m→∞Ωn+mG(X(Sm+n)).

This implies that LsEG
+(ηX) is a retract up to equivalence of the morphism

LsEG
+(iDL

s
D(ηX)).

Since the last morphism is obviously an equivalence, this completes the proof that
(1) is an equivalence. �
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