DIFFERENTIATION OF FUNCTORS:
INTRODUCTION TO GOODWILLIE CALCULUS

G. RAPTIS

1. RECOLLECTIONS

Let € be an oo-category with finite limits. The oo-category Sp(%) of spec-
trum objects in % is the co-category of reduced excisive functors

Sp(%) = Exc. (S, €).

We recall that a functor F: Sfit — ¢ is reduced (resp. excisive) if F' preserves
the terminal object (resp. F' sends pushouts to pullbacks). We have a canonical
equivalence Sp(%’) ~ Sp(¥.) where €, = €,/ is the associated pointed oo-category
of pointed objects in . The equivalence holds because the values of a reduced
excisive functor F': Sfi* — ¢ are canonically pointed.

The oo-category Sp(%) is stable. Note that for every F' € Sp(%), there is
a canonical equivalence F(S°) ~ Qm"F(S™) for any n > 0. There is a functor
Q°: Sp(¢) — €, F — F(S°). The functor 2 is an equivalence if and only if ¢
is stable.

The stable co-category Sp(%) has the following universal property of stabi-
lization: for any pointed co-category 2 with finite colimits, there is an equivalence

(Q% 0 —): Exc,(2,Sp(%)) = Exc.(2,%).

The construction € — Sp(%) is functorial in the following sense: given a left
exact functor f: ¥ — ¥’ between pointed oco-categories with finite limits, then
composition with f defines a functor

Sp(f): Sp(%) = Sp(¢”)
such that the following diagram commutes

Sp(#) 2L sp()

M
¢— I

Moreover, by the universal property of Sp(—), the functor Sp(f) is essentially
unique.

Question: What can we say when f: € — %" is not left exact?
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2. THE (FIRST) EXCISIVE APPROXIMATION

We make the following assumptions which apply througout this section:

(1) 2 is a differentiable co-category (= & has finite limits, sequential col-
imits, and these commute with each other, e.g., an oco-topos or a stable
oo-category).

(2) ¥ is an co-category with finite colimits and a terminal object *.

Let Exc(%, 2) denote the co-category of excisive functors from € to 2 — regarded
as a full subcategory of Fun(%, 2).

Theorem 1. There is an adjunction
Py : Fun(¥,2) = Exc(¥¢, Z): incl.

Moreover, the functor Py is left exact.

Definition of the functor P;. We first consider the functor Fun(%’, 2) 4, Fun(¥, 2)
which is defined on objects F' € Fun(%,2) and X € € by

(T F)(X) = pullback of (F(x) = F(XX) < F(x)).

There is a natural transformation fg: F — T F which is defined by the canon-
ical map to the pullback. Note that 0r is an equivalence if F' is already exci-
sive. Even though 77 F need not be excisive, the idea is that 71 F' functions as a
first approximate stage towards turning F' into an excisive functor. The functor
Ty : Fun(%, 2) — Fun(¥%, 2) is left exact because it is given by a limit of left exact
functors.

The natural transformation 0 is also natural in F', so we obtain a natural trans-
formation 6: id — T} (—). Then we define:

%
PF = colim(F 25 Ty F “25 Ty(TyF) L5 0.

(Note that we have used O, p instead of T7(6p)!) Then the resulting functor
Py : Fun(¥, 2) — Fun(%, 2) is again left exact because it is a sequential colimit of
left exact functors and 2 is differentiable by assumption. This proves the second
claim of Theorem [Il

Proposition 2. Let F': € — 2 be a functor.
(1) Let X denote a pushout diagram in € :

Xog— X3
Xo — Xo1-
Then the morphism of squares in 9
0r(X): F(X) - Th F(X)

factors through a pullback square.
(2) P F is excisive.
(3) Pl(HF) Pl(F) — Pl(TlF)
(4) P (F) = P (P F).
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Proof. (1) 0r(X) factors through the following pullback square Y:

Yo —— F(Xy)

L]

F(Xo) E—d F(X()l)

The morphism F(X) — Y is the canonical morphism to the pullback. Three of the
components of the morphism Y — T F(X) are defined by the natural transforma-
tion 6.

The morphism Yy — T1F(Xg) is defined as follows: first consider the canonical
morphism of squares from X to the pushout square,

Xg—}*

|

* —— EXg,

then apply F, and take pullbacks in 2. To see that this defines the required
morphism of squares, note that each component of the morphism Y — 77 F(X) can
also be described naturally in this way (i.e., as induced by a suitable morphism
of pushouts after applying F' and taking pullbacks), so we obtain a well-defined
factorization of Op(X).

(2) For any pushout square X in %, the square Py F(X) is a sequential colimit of
morphisms of squares, and each of these morphisms factors through a pullback
square by (1). As a consequence, by cofinality, P, F'(X) is the sequential colimit of
pullback squares in . This is again a pullback since 2 is differentiable.

(3) We have the following composition of equivalences:
P F(=) ~ lim(Py(F)(x = S(=) - *))
~ lim(Py (cpy = F(2(=)) + cp))
~ P (T F(-))
where cp(,) denotes the constant functor at F'(x) — the first equivalence uses that

P, F is excisive, the second equivalence can be verified directly, and the third equiv-
alence uses that P; is left exact. (4) follows immediately from (3).

See [Gollll, Section 1], [LuHAl 6.1.1]. O

Proof of Theorem It remains to show that P;: Fun(%¢,2) — Exc(¥, 2) is
a localization. Let ¢p: F — Py F be the natural transformation induced by 6.
Proposition 2(2) implies that

¢p,r: PLF = P PF.

According to Proposition 2(4), we also have that P (¢p): Py (F) = Pi(P,F). Then
the required result follows. See [GolIll Section 1], [LuHAl 6.1.1]. O

P, F is the (1-)excisive approximation to F. Theorem [I|is the main result of
[GoITI| Section 1] [LuHAL 6.1.1] in the case n =1 — see also [Gol, Section 1].

Example. Let F: Si® — S be a functor. The excisive approximation P, F is not
reduced in general. Let PyF': Si" — S denote the constant functor at F (). There
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is a natural transformation P; F' — Py F. The fiber of this natural transformation is
a reduced excisive functor Dy F' € Exc, (S, S,) = Sp(S.) - the differential of F.
For example, if F' is the inclusion functor, then D1 F ~ P F' ~ colim,, Q" E"™(—).

3. DIFFERENTIATION OF FUNCTORS

Definition 3. Let F': ¥ — Z be a functor between oco-categories with finite limits.
A pair (f: Sp(€) = Sp(2),a: F o QP — Qg o f) is called a derivative of F if
the following are satisfied:
(a) f is exact.
(b) For every exact functor g: Sp(¢) — Sp(¥), the map between mapping
spaces in the respective co-categories of functors:
QF *—)oa
map(f,g) % map(F o QZ, Q% o g)
is an equivalence.

In other words, a exhibits f as the closest approximation to a factorization of
F o QZ through Q7).

Example. Let F: 4 — Z be a left exact functor between co-categories with
finite limits. Then the induced functor Sp(F'): Sp(%) — Sp(2) together with the
canonical equivalence F' o Q% ~ Qg o Sp(F') is the derivative of F' — in this case,
property (b) essentially states the universal property of Sp(—).

Let € be an oo-category with finite limits and let 2 be a differentiable co-
category. Let F': ¥ — 2 be a reduced functor. The functor P; of Theorem
restricts to the oco-categories of reduced functors:

Py : Fun,(Sp(¥), 2) — Exc.(Sp(¥), Z).

We denote by F': = Pi(F o Q%) the excisive approximation to F o Q2 — this
is also the differential of F' o Q. Furthermore, let o/: F' 0 Q% — F’ denote the
canonical natural transformation. There is an (essentially) unique exact functor
f:Sp(€¢) — Sp(2) that corresponds to F’ under the equivalence:

Exc, (Sp(%),Sp(2)) = Exc.(Sp(€), ).
The natural transformation o defines a natural transformation a: FoQg — QFof.
Then Theorem [1| implies:

Proposition 4. (f,«) is a derivative of F.

We denote the derivative f: Sp(¢) — Sp(2) of a reduced functor F: € — &
by OF.

Explicit Description of the Derivative: Based on the construction of the functor Py,
the derivative f: Sp(%) — Sp(2) of the reduced functor F': ¥ — & is identified
with the composite functor

L +—(Fo_ s
Sp(#) = pun, (8, %) =07 pun, (80, 2) L2 $p(2)

where Lg, denotes the left adjoint of the inclusion functor i5 — this is just a special
case of the functor P;. We have canonical equivalences for any X € Fun,(Si®, 2):

0% L5 (X) ~ colimy, Q"X (S™) and Lg(X)(—) ~ colim,, Q"X (E"(—)).
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Theorem 5 (Chain Rule). Let € £ 9 S & be reduced functors between oo-
categories with finite limits. Suppose that 2 and & are differentiable and that G
preserves sequential colimits. Then there is a canonical identification:

O(GoF)~0GodF: Sp(¥) — Sp(&).

Proof. See [LuHAL 6.2.1.22-6.2.1.24]. Using the description of the derivative given
above, we need to show that the canonical morphism:

Fo0d(GoF)~QFPLEG Fliy = QX LG igLi, Ftiy ~ QF 0 9(G) 0 O(F)
is an equivalence of functors. It suffices to prove that
(1) LGt = LG TigLs,.
In other words, we claim that for every X € Fun, (S, 2), the natural morphism
(= unit map):
nx: X — (igL3)(X)
becomes an equivalence after applying L5 G™. The natural morphism (in X)

QFLGT(X) —————— QF LG (igLy(X))
colim,, Q"G (X (5™)) — colimy, ;0o Q"G (Q™ X (S™H™))
admits a natural retraction up to equivalence, induced by G o 29 — Qg o G,

0F L3 G (i Ly (X)) OFL3G*(X)

zl lz

colimy, 00 QP G(QM X (™)) —— colimy, 0o Q"M G(X (S™H)).

This implies that LG (nx) is a retract up to equivalence of the morphism

G (i L% (1x))-
Since the last morphism is obviously an equivalence, this completes the proof that
(1) is an equivalence. O
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