
PRESENTABLE ∞-CATEGORIES – I

P. BÄRNREUTHER

1. Preliminaries

1.1. Adjoint functors. Let G : D → C be a functor between ∞-categories. G
admits a left adjoint if and only if for any c ∈ C the ∞-category Dc/ defined by
the pullback:

Dc/ Cc/

D C
G

admits an initial object. A proof of this can be found near [1, Proposition 5.2.4.2].
An∞-category C admits an initial object if the following conditions are satisfied:
(1) C is locally small.
(2) C is complete.
(3) C admits a small weakly initial set, i.e., there is a small set of objects

S in C with the property that for every x ∈ C there exists s ∈ S such that
map(s, x) 6= ∅.

A proof of this can be found in [2, Proposition 2.3.2].

1.2. Localizations. A localization is a functor F : C → D which admits a fully
faithful right adjoint (equivalently: the counit of the adjunction is an equivalence).
Given an ∞-category C and a functor L : C → C, the following are equivalent:

(1) The functor C L−→ LC is a localization, that is, it is a left adjoint of the
inclusion functor LC ⊆ C. Here LC denotes the full subcategory spanned by
the essential image of L.

(2) There is a natural transformation α : idC → L such that for every C ∈ C,
the canonical morphisms αL(C) and L(αC) are equivalences.

In this case, we will often call the functor L also a localization. Moreover, we have:
C ∈ LC ⇔ C is L-local (= local with respect to the class of maps f in C such that
L(f) is an equivalence). See [1, 5.2.7].

2. Characterization of Presentable ∞-Categories

Theorem 1. Let C be an∞-category. Then the following statements are equivalent:
(1) C is accessible and cocomplete.
(2) C is accessible and for every regular cardinal κ the full subcategory of

κ-compact objects Cκ admits κ-small colimits.
(3) There exists a regular cardinal κ such that C is κ-accessible and Cκ admits

κ-small colimits.
1



2 P. BÄRNREUTHER

(4) For some regular cardinal κ, there exists a small∞-category D which admits
κ-small colimits and Indκ(D) ' C.

(5) There exists a small ∞-category D such that C is an accessible localization
of P(D).

(6) C is locally small, cocomplete, and for some regular cardinal κ, there exists
a set S of κ-compact objects in C such that S generates C under small
colimits.

(7) C is locally small, cocomplete, and for some regular cardinal κ, there exists
a set S of κ-compact objects in C which jointly detect equivalences (= a
morphism u : c → c′ in C is an equivalence if and only if map(s, u) is an
equivalence for every s ∈ S).

If these equivalent conditions are satisfied, we call C presentable.

Lemma 2. Let C and D be accessible ∞-categories and let F : C � D : G be an
adjunction. Then F and G are accessible functors.

Proof. F is accessible since left adjoints preserve colimits. We may assume that C
and D are both κ-accessible. As Cκ is essentially small, there is a τ >> κ such that
F (Cκ) ⊆ Dτ . Let p : I → D, i 7→ di be a τ -filtered diagram in D with colimit d ∈ D.
For each c ∈ C, there is a (κ-filtered) diagram J → Cκ, j 7→ cj , with colimit c. Then:

map(c, colimI(G ◦ p)) ' lim
j∈J

map(cj , colimi∈I(G(di)))

' lim
j∈J

colimi∈I map(cj , G(di))

' lim
j∈J

colimi∈I map(F (cj), di)

' lim
j∈J

map(F (cj), d)

' map(F (c), d) ' map(c,G(d))

This implies that G preserves τ -filtered colimits. �

Proposition 3. Let C be an accessible ∞-category and let L : C → C be a localiza-
tion. The following are equivalent:

(1) L is accessible.
(2) LC is accessible.

Proof. (1) ⇒ (2): Assume that L is κ-continuous (= preserves κ-filtered colimits)
and C is κ-accessible. There is τ >> κ such that L(Cκ) ⊆ (LC)τ , as Cκ is essentially
small. Let C′ be the full subcategory of C which is spanned by colimits of τ -small
κ-filtered diagrams with values in Cκ. Then L(C′) still consists of τ -compact objects
in LC, as L preserves κ-filtered colimits and Cτ is closed under τ -small colimits.
Every object in C is a κ-filtered colimit of objects in Cκ. By adding vertices (= cones)
to this κ-filtered index category so that it becomes τ -filtered, and extending the
diagram by taking τ -small colimits, we can also write an object of C as a τ -filtered
colimit of objects in C′ (see [1, Proposition 4.2.3.4 and the proof of Proposition
5.4.2.9]). As L : C → LC preserves colimits, it follows that L(C′) generates LC under
τ -filtered colimits. (2) ⇒ (1): L is the composition of adjoint functors between
accessible ∞-categories, so the claim follows from the preceding lemma.
See [1, Proposition 5.5.1.2]. �
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Digression 4 (Idempotent completeness). Let Idem+ be the nerve of the ordinary
category with two objects X and Y and morphisms

Hom(X,X) = {idX , e} Hom(Y, Y ) = {idY }
Hom(X,Y ) = {r} Hom(Y,X) = {s}

such that s◦r = e and e◦e = e. Let Idem ⊆ Idem+ be the full subcategory spanned
by X. We call an ∞-category C idempotent complete if the restriction functor

Fun(Idem+, C)→ Fun(Idem, C)

is a trivial fibration. See [1, 4.4.5].
We will use the following facts:

(i) For a small ∞-category C, there is a fully faithful functor F : C → D, where
D is small and idempotent complete, and every object D ∈ D is a retract
of F (C) for some C ∈ C. D is called the idempotent completion of C.
See [1, 5.1.4].
The functor induced by F between the Indκ-completions is an equivalence
of ∞-categories [1, Proposition 5.5.1.3].

(ii) An idempotent complete subcategory of an idempotent complete∞-category
is closed under retracts.

Proof. (of Theorem 1): (See [1, Theorem 5.5.1.1])
(1)⇒(2) follows from the fact that κ-compact objects are closed under κ-small
colimits (which exist in C) [1, Corollary 5.3.4.15]. (2)⇒(3) is obvious. (3)⇒(4)
follows from the equivalence Indκ(Cκ) ' C.
(4)⇒(5): By Digression 4, we may assume that D is idempotent complete.
Claim: The Yoneda embedding j : D → Pκ(D) is a right adjoint.
Proof of Claim: According to the results of Subsection 1.1, it suffices to show that
for every F ∈ Pκ(D), the functor map(F,_) ◦ j : D → S is corepresentable. We
know that F is a retract of a colimit of a κ-small diagram of representable functors
I → P(D), i 7→ j(di), see [1, Proposition 5.3.4.17]. Thus, map(F,_) ◦ j is a retract
of the corepresentable functor

lim
i∈I

map(j(di), j(_)) ' lim
i∈I

map(di,_) ' map(colimi∈I di,_).

As D is idempotent complete, it follows that a retract of a corepresentable functor
is again corepresentable. This completes the proof of the Claim.
Note that j is also fully faithful. Let D′ be a small ∞-category which is equivalent
to Pκ(D). By applying Indκ to the adjunction of the Claim, we obtain a new
adjunction with a fully faithful right adjoint and a left adjoint:

L : P(D) ' Indκ(D′) � Indκ(D) ' C.

(5)⇒(6): Let F and G denote the left and right adjoints of the adjunction in (5).
Note that C is locally small since P(D) is locally small. We claim that every small
diagram p : I → C has a colimit. We know that G ◦ p has a colimit in P(D). As F
preserves colimits, the composite diagram FG◦p has a colimit in C. This diagram is
equivalent to p, as FG is equivalent to idC (witnessed by the counit transformation).
This shows that C is cocomplete.
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Let S := {F (j(d)) | d ∈ D}. Choose a regular cardinal κ such that G is κ-continuous.
Then for all d ∈ D, F (j(d)) ∈ C is κ-compact, because the functor

map(F (j(d)),_) ' map(j(d), G(_))

commutes with κ-filtered colimits. Moreover, since {j(d) | d ∈ D} generates P(D)
under small colimits, it follows that S also generates C.
(6)⇒(1): Let C′ ⊆ C denote the full subcategory of κ-small colimits of diagrams in
S. Then C′ consists of κ-compact objects, as those are closed under κ-small colimits.
We can rewrite every small colimit of a diagram p : I → C with values in S as the
colimit of a κ-filtered diagram p′ : I ′ → C′ – we may choose I ′ to be the poset of
κ-small subsets of I and define p′ by taking colimits. Thus, C is accessible.
See also [1, Theorem 5.5.1.1].
(6)⇒(7): Let S be a set of κ-compact objects as in (6). We claim that S detects
equivalences. Suppose that u : a→ b is a morphism in C such that map(s, u) is an
equivalence for every s ∈ S. The class of objects c ∈ C for which map(c, u) is an
equivalence is closed under colimits in C. It follows that this class contains all the
objects of C, which then implies that u is an equivalence.
(7)⇒(6) – First Proof. (G. Raptis) Let D be the smallest full subcategory of C
which contains S and is closed under κ-small colimits. Let c ∈ C and consider the
associated canonical κ-filtered diagram with respect to D:

Jc : D/c → D → C, (d→ c) 7→ d.

We claim that the canonical morphism u : colimD/c Jc → c is an equivalence. By
assumption, u an equivalence if mapC(s, u) is an equivalence for every s ∈ S. By
adjunction, it suffices to prove that u has the right lifting property with respect to
the morphisms

s⊗ ∂∆n → s⊗∆n

for every s ∈ S and n ≥ 0. Note that these tensors exist because C is cocomplete
and the morphisms are in D. Consider a lifting problem in C of the following form:

s⊗ ∂∆n

��

// colimD/c Jc

u

��
s⊗∆n // c.

Since s⊗∂∆n is again κ-compact and D/c is κ-filtered, the top arrow factors through
some stage Jc(d→ c). We may then consider the following pushout in C

s⊗ ∂∆n

��

// d

��

��

s⊗∆n //

))

d′

  
c.

The morphism (d′ → c) defines an object in D/c. So, by definition, this morphism
factors canonically through u giving the required lift in our original lifting problem.
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Second Proof. (D.–C. Cisinski) Let Cκ ⊆ C be the full subcategory of κ-compact
objects. Then Cκ contains S and is closed under κ-small colimits. Let c ∈ C and
consider the associated canonical κ-filtered diagram with respect to Cκ:

Jc : Cκ/c → Cκ → C.

We claim that the canonical morphism colimCκ
/c
Jc → c is an equivalence. For every

s ∈ S, we have a canonical equivalence:

map(s, colimCκ
/c
Jc) ' colimCκ

/c
map(s, Jc(_))

because s is κ-compact. Moreover, there is a canonical equivalence:

colim(c′→c)∈Cκ
/c

map(_, c′) ' map(_, c)

using the density of the Yoneda embedding for Cκ and the Yoneda Lemma for C.
Since S detects equivalences, the required result follows. �

Corollary 5. Let C be a presentable ∞-category. Then C is complete.

Proof. By Theorem 1(5), we may assume that C is the full subcategory of local
objects in P(D) with respect to a localization L : P(D) � C : i. Let p : I → C be a
small diagram. Local objects are closed under limits in P(D), hence the limit of the
diagram i ◦ p in P(D) is again local. Since i is fully faithful, the limit cone of i ◦ p
factors through i and defines a limit cone also in C.
See also [1, Corollary 5.5.2.4] and [2, Corollary 4.1.5]. �

3. Adjoint Functor Theorems

Proposition 6. Let C be a presentable ∞-category and let F : Cop → S be a
functor. Then the following are equivalent:

(1) F is representable.
(2) F preserves small limits.

Proof. See [1, Proposition 5.5.2.2].
(1)⇒(2): F is identified with the Yoneda embedding Cop → P(Cop) followed by the
evaluation functor at the representing object. Both of these functors preserve all
small limits.
(2)⇒(1): We first treat the case C = P(D) for some small ∞-category D. Let

(f : Dop j
op

→ P(D)op F→ S) ∈ P(D)

Then F is agrees with map(_, f), as both functors preserve small limits and their
restrictions to D agree by the Yoneda Lemma.
Now let C be an arbitrary presentable ∞-category. Let L : P(D) → C be a
localization as in Theorem 1 (5). Let S be the collections of morphisms in P(D)
which map to equivalences under L. We may assume that C is the full subcategory
of S-local objects. The composite functor

P(D)op Lop

→ Cop F→ S

preserves small limits and therefore it is represented by some object f ∈ P(D).
Then it suffices to show that f is S-local. This holds because the representable
functor FLop factors through Cop. �
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We also have the following dual version of the above proposition. This is a special
case of Theorem 8(2) below. See also [1, Proposition 5.5.2.7].

Proposition 7. Let C be a presentable ∞-category and let F : C → S be a functor.
Then the following are equivalent:

(1) F is corepresentable.
(2) F preserves limits and is accessible.

Theorem 8. Let C and D be presentable ∞-categories and let F : C → D be a
functor. Then:

(1) F has a right adjoint ⇔ F preserves small colimits.
(2) F has a left adjoint ⇔ F preserves small limits and is accessible.

Proof. See [1, Corollary 5.5.2.9] and [2, Section 4].
(1) “⇒”: This is always true [1, Proposition 5.2.3.5]. “⇐”: Using the charac-

terization in Subsection 1.1, it suffices to prove that for every representable
functor Dop → S, the composite Cop F op

−−→ Dop → S is again representable.
This follows easily from Proposition 6.

(2) “⇒”: Right adjoints preserve small limits (see [1, Proposition 5.2.3.5]). F
is also accessible by Proposition 2.
“⇐”: (see [2, Section 4]) According to Subsection 1.1, it suffices to show
that for every d ∈ D, the ∞-category Cd/ has a weakly initial set, given that
the following two assertions hold:

- Cd/ is locally small as it is a pullback of locally small categories.
- Cd/ is complete as it is a (homotopy) pullback of limit-preserving
functors between complete categories (see Corollary 5 and apply [1,
Lemma 5.4.5.5]).

Let κ be a regular cardinal such that C is κ-accessible, F is κ-continuous
and d is κ-compact. Let C′ ⊆ Cκ be a small full subcategory such that the
inclusion is an equivalence. Let S : = {(c, α : d→ F (c)) | c ∈ C′} be a set
of objects in Cd/. Using the fact that every object in C is κ-filtered colimit
of κ-compact objects and our assumptions on κ, it follows that for every
(c, d→ F (c)) in Cd/, there is a morphism from an object in S.

�

Proof. (of Proposition 7): (1)⇒(2): Suppose that F is corepresented by the object
c ∈ C. Then F is identified with the composition C j→ P(C) evc→ S and therefore it
preserves limits. Moreover, we may choose a κ such that c is κ-compact, which then
means that F preserves κ-filtered colimits. (2)⇒(1): By Theorem 8(2), F admits a
left adjoint L. Then there are canonical equivalences:

F (x) ' mapS(∗, F (x)) ' mapC(L(∗), x).
Therefore F is corepresented by the object L(∗). �
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