PRESENTABLE co-CATEGORIES - 1

P. BARNREUTHER

1. PRELIMINARIES

1.1. Adjoint functors. Let G : D — C be a functor between oco-categories. G
admits a left adjoint if and only if for any ¢ € C the co-category D, defined by
the pullback:

Dc/ — Cc/

|

D——=C
G

admits an initial object. A proof of this can be found near |1, Proposition 5.2.4.2].

An oo-category C admits an initial object if the following conditions are satisfied:

(1) C is locally small.

(2) C is complete.

(3) C admits a small weakly initial set, i.e., there is a small set of objects
S in C with the property that for every x € C there exists s € S such that

map(s, x) # 0.
A proof of this can be found in [2, Proposition 2.3.2].

1.2. Localizations. A localization is a functor F': C — D which admits a fully
faithful right adjoint (equivalently: the counit of the adjunction is an equivalence).
Given an oo-category C and a functor L : C — C, the following are equivalent:

(1) The functor C L ICisa localization, that is, it is a left adjoint of the
inclusion functor LC C C. Here LC denotes the full subcategory spanned by
the essential image of L.

(2) There is a natural transformation « :id¢ — L such that for every C € C,
the canonical morphisms ay,cy and L(ac) are equivalences.

In this case, we will often call the functor L also a localization. Moreover, we have:
C € LC & C is L-local (= local with respect to the class of maps f in C such that
L(f) is an equivalence). See [1} 5.2.7].

2. CHARACTERIZATION OF PRESENTABLE co-CATEGORIES

Theorem 1. Let C be an oo-category. Then the following statements are equivalent:

(1) C is accessible and cocomplete.
(2) C is accessible and for every regular cardinal k the full subcategory of
k-compact objects C* admits k-small colimits.
(3) There exists a regular cardinal k such that C is k-accessible and C* admits
k-small colimits.
1
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(4) For some regular cardinal k, there exists a small co-category D which admits
k-small colimits and Ind, (D) ~ C.

(5) There exists a small co-category D such that C is an accessible localization
of P(D).

(6) C is locally small, cocomplete, and for some regular cardinal , there exists
a set S of k-compact objects in C such that S generates C under small
colimits.

(7) C is locally small, cocomplete, and for some regular cardinal k, there exists
a set S of k-compact objects in C which jointly detect equivalences (= a
morphism u : ¢ = ¢ in C is an equivalence if and only if map(s,u) is an
equivalence for every s € S).

If these equivalent conditions are satisfied, we call C presentable.

Lemma 2. Let C and D be accessible co-categories and let F': C 2 D: G be an
adjunction. Then F' and G are accessible functors.

PROOF. F is accessible since left adjoints preserve colimits. We may assume that C
and D are both k-accessible. As C* is essentially small, there is a 7 >> k such that
F(Cr) CD7. Let p: I — D,i > d; be a T-filtered diagram in D with colimit d € D.
For each ¢ € C, there is a (s-filtered) diagram J — C*, j — ¢;, with colimit ¢. Then:

map(c, colim; (G o p)) =~ 11€mJ map(c;, colim;er(G(d;)))
j
~ lim colim;er map(c;, G(d;))
JjeJ

~ lim colim;e; map(F'(¢;), d;)
JjEJ

~ lim map(F(c;), )

~ map(F(c), d) ~ map(c, G(d))
This implies that G preserves 7-filtered colimits. O

Proposition 3. Let C be an accessible oco-category and let L : C — C be a localiza-
tion. The following are equivalent:

(1) L is accessible.
(2) LC is accessible.

PROOF. (1) = (2): Assume that L is k-continuous (= preserves r-filtered colimits)
and C is k-accessible. There is 7 >> & such that L(C*) C (LC)", as C" is essentially
small. Let C’ be the full subcategory of C which is spanned by colimits of T-small
k-filtered diagrams with values in C*. Then L(C’) still consists of 7-compact objects
in LC, as L preserves k-filtered colimits and C” is closed under 7-small colimits.
Every object in C is a k-filtered colimit of objects in C*. By adding vertices (= cones)
to this k-filtered index category so that it becomes 7-filtered, and extending the
diagram by taking 7-small colimits, we can also write an object of C as a 7-filtered
colimit of objects in C’ (see [1, Proposition 4.2.3.4 and the proof of Proposition
5.4.2.9]). As L :C — LC preserves colimits, it follows that L(C’) generates LC under
7-filtered colimits. (2) = (1): L is the composition of adjoint functors between
accessible co-categories, so the claim follows from the preceding lemma.

See |1, Proposition 5.5.1.2]. O



PRESENTABLE co-CATEGORIES - 1 3

Digression 4 (Idempotent completeness). Let Idem™ be the nerve of the ordinary
category with two objects X and Y and morphisms

Hom(X, X) = {idx, e} Hom(Y,Y) = {idy'}
Hom(X,Y) = {r} Hom(Y, X) = {s}

such that sor = e and eoe = e. Let Idem C Idem™ be the full subcategory spanned
by X. We call an co-category C idempotent complete if the restriction functor

Fun(Idem™, C) — Fun(Idem, C)

is a trivial fibration. See [1, 4.4.5].
We will use the following facts:

(i) For a small co-category C, there is a fully faithful functor F': C — D, where
D is small and idempotent complete, and every object D € D is a retract
of F(C) for some C € C. D is called the idempotent completion of C.
See |1} 5.1.4].
The functor induced by F between the Ind,-completions is an equivalence
of co-categories |1, Proposition 5.5.1.3].

(ii) An idempotent complete subcategory of an idempotent complete co-category
is closed under retracts.

PROOF. (of Theorem [I): (See [I, Theorem 5.5.1.1])

(1)=(2) follows from the fact that k-compact objects are closed under x-small
colimits (which exist in C) |1, Corollary 5.3.4.15]. (2)=(3) is obvious. (3)=(4)
follows from the equivalence Ind,,(C*) ~ C.

(4)=(5): By Digression |4 we may assume that D is idempotent complete.
Claim: The Yoneda embedding j : D — P"(D) is a right adjoint.

Proof of Claim: According to the results of Subsection [I.1] it suffices to show that
for every F' € P*(D), the functor map(F, )o j: D — S is corepresentable. We
know that F' is a retract of a colimit of a k-small diagram of representable functors
I — P(D),i— j(d;), see |1, Proposition 5.3.4.17]. Thus, map(F,_) o j is a retract
of the corepresentable functor

llirrll map(j(d;),j(_)) ~ llirrll map(d;, ) ~ map(colim;es d;, ).
1€ 1€

As D is idempotent complete, it follows that a retract of a corepresentable functor
is again corepresentable. This completes the proof of the Claim.

Note that j is also fully faithful. Let D’ be a small co-category which is equivalent
to P*(D). By applying Ind, to the adjunction of the Claim, we obtain a new
adjunction with a fully faithful right adjoint and a left adjoint:

L: P(D) ~Ind,(D') = Ind, (D) ~C.

(5)=(6): Let F and G denote the left and right adjoints of the adjunction in (5).
Note that C is locally small since P(D) is locally small. We claim that every small
diagram p : I — C has a colimit. We know that G o p has a colimit in P(D). As F'
preserves colimits, the composite diagram F'G op has a colimit in C. This diagram is
equivalent to p, as F'G is equivalent to ide (witnessed by the counit transformation).
This shows that C is cocomplete.
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Let S := {F(j(d)) | d € D}. Choose a regular cardinal x such that G is x-continuous.
Then for all d € D, F(j(d)) € C is k-compact, because the functor

map(F(j(d)), ) ~ map(j(d), G(_))

commutes with s-filtered colimits. Moreover, since {j(d) | d € D} generates P(D)
under small colimits, it follows that S also generates C.

(6)=(1): Let C' C C denote the full subcategory of x-small colimits of diagrams in
S. Then C’ consists of k-compact objects, as those are closed under x-small colimits.
We can rewrite every small colimit of a diagram p: I — C with values in S as the
colimit of a k-filtered diagram p’: I’ — C’ — we may choose I’ to be the poset of
r-small subsets of I and define p’ by taking colimits. Thus, C is accessible.

See also |1, Theorem 5.5.1.1].

(6)=(7): Let S be a set of k-compact objects as in (6). We claim that S detects
equivalences. Suppose that v : @ — b is a morphism in C such that map(s,u) is an
equivalence for every s € S. The class of objects ¢ € C for which map(c, u) is an
equivalence is closed under colimits in C. It follows that this class contains all the
objects of C, which then implies that u is an equivalence.

(7)=(6) — First Proof. (G. Raptis) Let D be the smallest full subcategory of C
which contains S and is closed under s-small colimits. Let ¢ € C and consider the
associated canonical k-filtered diagram with respect to D:

Je:Dye =D —C, (d—c)—d.

We claim that the canonical morphism u: colimp, J. — ¢ is an equivalence. By
assumption, u an equivalence if map;(s,u) is an equivalence for every s € S. By
adjunction, it suffices to prove that u has the right lifting property with respect to
the morphisms

s®QOA"™ =5 s A"

for every s € S and n > 0. Note that these tensors exist because C is cocomplete
and the morphisms are in D. Consider a lifting problem in C of the following form:

$® O0A" —— colimp/c Je
SRA" — ¢,

Since s ® OA™ is again k-compact and D, is k-filtered, the top arrow factors through
some stage J.(d — ¢). We may then consider the following pushout in C

S®OA™ ——=d

The morphism (d’ — ¢) defines an object in D /.. So, by definition, this morphism
factors canonically through u giving the required lift in our original lifting problem.
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Second Proof. (D.—C. Cisinski) Let C* C C be the full subcategory of k-compact
objects. Then C” contains S and is closed under s-small colimits. Let ¢ € C and
consider the associated canonical k-filtered diagram with respect to C*:

J.: C’/‘”"C—>C“ —C.

We claim that the canonical morphism colimc7 J. — ¢ is an equivalence. For every
c
s € S, we have a canonical equivalence:

map(s,colimc7 Je) ~ colimcr/e map(s, J.(_))
because s is k-compact. Moreover, there is a canonical equivalence:
. /
0011111(6/_)6)667c map(_,¢") ~ map(_,c)

using the density of the Yoneda embedding for C* and the Yoneda Lemma for C.
Since S detects equivalences, the required result follows. (I

Corollary 5. Let C be a presentable co-category. Then C is complete.

PRrOOF. By Theorem 5), we may assume that C is the full subcategory of local
objects in P(D) with respect to a localization L: P(D) = C:i. Let p: I — C be a
small diagram. Local objects are closed under limits in P (D), hence the limit of the
diagram i o p in P(D) is again local. Since 4 is fully faithful, the limit cone of i o p
factors through ¢ and defines a limit cone also in C.

See also |1, Corollary 5.5.2.4] and [2, Corollary 4.1.5]. O

3. ADJOINT FUNCTOR THEOREMS

Proposition 6. Let C be a presentable co-category and let F' : C°? — S be a
functor. Then the following are equivalent:

(1) F is representable.
(2) F preserves small limits.

PROOF. See |1, Proposition 5.5.2.2].

(1)=(2): F is identified with the Yoneda embedding C°? — P(C°P) followed by the
evaluation functor at the representing object. Both of these functors preserve all
small limits.

(2)=(1): We first treat the case C = P (D) for some small co-category D. Let
(f : 0 % p(D)r B 5) e P(D)
Then F is agrees with map(_, f), as both functors preserve small limits and their

restrictions to D agree by the Yoneda Lemma.

Now let C be an arbitrary presentable co-category. Let L : P(D) — C be a
localization as in Theorem [I] (5). Let S be the collections of morphisms in P(D)
which map to equivalences under L. We may assume that C is the full subcategory
of S-local objects. The composite functor

PD)>* 5 er B s

preserves small limits and therefore it is represented by some object f € P(D).
Then it suffices to show that f is S-local. This holds because the representable
functor F'L°P factors through C°P. (]
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We also have the following dual version of the above proposition. This is a special
case of Theorem [§]2) below. See also [I, Proposition 5.5.2.7].

Proposition 7. Let C be a presentable oo-category and let F': C — S be a functor.
Then the following are equivalent:

(1) F is corepresentable.
(2) F preserves limits and is accessible.

Theorem 8. Let C and D be presentable co-categories and let F' : C — D be a
functor. Then:

(1) F has a right adjoint < F preserves small colimits.
(2) F has a left adjoint < F' preserves small limits and is accessible.

PRrROOF. See (1, Corollary 5.5.2.9] and [2, Section 4].

(1) “=7: This is always true [1, Proposition 5.2.3.5]. “«<=”: Using the charac-
terization in Subsection [I.1] it suffices to prove that for every representable

functor D°? — S, the composite C°P P por 4 S s again representable.
This follows easily from Proposition [6]

(2) “=7": Right adjoints preserve small limits (see |1, Proposition 5.2.3.5]). F
is also accessible by Proposition
“<=”: (see [2, Section 4]) According to Subsection it suffices to show
that for every d € D, the oo-category Cy, has a weakly initial set, given that
the following two assertions hold:

- Cy is locally small as it is a pullback of locally small categories.

- Cq/ is complete as it is a (homotopy) pullback of limit-preserving
functors between complete categories (see Corollary [5( and apply [1,
Lemma 5.4.5.5]).

Let k be a regular cardinal such that C is x-accessible, F' is k-continuous
and d is k-compact. Let C’ C C* be a small full subcategory such that the
inclusion is an equivalence. Let S: = {(¢c,a:d — F(c)) | ¢ € C'} be a set
of objects in Cq,. Using the fact that every object in C is k-filtered colimit
of k-compact objects and our assumptions on k, it follows that for every
(c,d — F(c)) in Cqy, there is a morphism from an object in S.

d

PRrooF. (of Proposition: (1)=(2): Suppose that F is corepresented by the object

¢ € C. Then F is identified with the composition C % P(C) % S and therefore it
preserves limits. Moreover, we may choose a x such that c is k-compact, which then
means that F preserves x-filtered colimits. (2)=>(1): By Theorem [§[2), F admits a
left adjoint L. Then there are canonical equivalences:

F(z) ~ mapg(x, F(x)) ~ mapg(L(*), z).
Therefore F' is corepresented by the object L(x). (]
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