PRESENTABLE ∞-CATEGORIES – I #### P. BÄRNREUTHER #### 1. Preliminaries 1.1. Adjoint functors. Let $G: \mathcal{D} \to \mathcal{C}$ be a functor between ∞ -categories. G admits a **left adjoint** if and only if for any $c \in \mathcal{C}$ the ∞ -category $\mathcal{D}_{c/}$ defined by the pullback: $$\begin{array}{ccc} \mathcal{D}_{c/} \longrightarrow \mathcal{C}_{c/} \\ \downarrow & \downarrow \\ \mathcal{D} \xrightarrow{G} \mathcal{C} \end{array}$$ admits an initial object. A proof of this can be found near [1, Proposition 5.2.4.2]. An ∞ -category \mathcal{C} admits an **initial object** if the following conditions are satisfied: - (1) \mathcal{C} is locally small. - (2) \mathcal{C} is complete. - (3) \mathcal{C} admits a **small weakly initial set**, i.e., there is a small set of objects S in \mathcal{C} with the property that for every $x \in \mathcal{C}$ there exists $s \in S$ such that $\max(s, x) \neq \emptyset$. A proof of this can be found in [2, Proposition 2.3.2]. - 1.2. **Localizations.** A **localization** is a functor $F: \mathcal{C} \to \mathcal{D}$ which admits a fully faithful right adjoint (equivalently: the counit of the adjunction is an equivalence). Given an ∞ -category \mathcal{C} and a functor $L: \mathcal{C} \to \mathcal{C}$, the following are equivalent: - (1) The functor $\mathcal{C} \xrightarrow{L} L\mathcal{C}$ is a localization, that is, it is a left adjoint of the inclusion functor $L\mathcal{C} \subseteq \mathcal{C}$. Here $L\mathcal{C}$ denotes the full subcategory spanned by the essential image of L. - (2) There is a natural transformation $\alpha : \mathrm{id}_{\mathcal{C}} \to L$ such that for every $C \in \mathcal{C}$, the canonical morphisms $\alpha_{L(C)}$ and $L(\alpha_C)$ are equivalences. In this case, we will often call the functor L also a localization. Moreover, we have: $C \in L\mathcal{C} \Leftrightarrow C$ is L-local (= local with respect to the class of maps f in \mathcal{C} such that L(f) is an equivalence). See [1, 5.2.7]. # 2. Characterization of Presentable ∞ -Categories **Theorem 1.** Let C be an ∞ -category. Then the following statements are equivalent: - (1) \mathcal{C} is accessible and cocomplete. - (2) C is accessible and for every regular cardinal κ the full subcategory of κ -compact objects C^{κ} admits κ -small colimits. - (3) There exists a regular cardinal κ such that $\mathcal C$ is κ -accessible and $\mathcal C^{\kappa}$ admits κ -small colimits. - (4) For some regular cardinal κ , there exists a small ∞ -category \mathcal{D} which admits κ -small colimits and $\operatorname{Ind}_{\kappa}(\mathcal{D}) \simeq \mathcal{C}$. - (5) There exists a small ∞ -category \mathcal{D} such that \mathcal{C} is an accessible localization of $\mathcal{P}(\mathcal{D})$. - (6) C is locally small, cocomplete, and for some regular cardinal κ , there exists a set S of κ -compact objects in C such that S generates C under small colimits. - (7) C is locally small, cocomplete, and for some regular cardinal κ , there exists a set S of κ -compact objects in C which jointly detect equivalences (= a morphism $u: c \to c'$ in C is an equivalence if and only if map(s, u) is an equivalence for every $s \in S$). If these equivalent conditions are satisfied, we call \mathcal{C} **presentable**. **Lemma 2.** Let \mathcal{C} and \mathcal{D} be accessible ∞ -categories and let $F \colon \mathcal{C} \rightleftarrows \mathcal{D} \colon G$ be an adjunction. Then F and G are accessible functors. PROOF. F is accessible since left adjoints preserve colimits. We may assume that C and D are both κ -accessible. As C^{κ} is essentially small, there is a $\tau >> \kappa$ such that $F(C^{\kappa}) \subseteq D^{\tau}$. Let $p: I \to D, i \mapsto d_i$ be a τ -filtered diagram in D with colimit $d \in D$. For each $c \in C$, there is a $(\kappa$ -filtered) diagram $J \to C^{\kappa}, j \mapsto c_j$, with colimit c. Then: $$\begin{split} \operatorname{map}(c, \operatorname{colim}_I(G \circ p)) &\simeq \lim_{j \in J} \operatorname{map}(c_j, \operatorname{colim}_{i \in I}(G(d_i))) \\ &\simeq \lim_{j \in J} \operatorname{colim}_{i \in I} \operatorname{map}(c_j, G(d_i)) \\ &\simeq \lim_{j \in J} \operatorname{colim}_{i \in I} \operatorname{map}(F(c_j), d_i) \\ &\simeq \lim_{j \in J} \operatorname{map}(F(c_j), d) \\ &\simeq \operatorname{map}(F(c), d) \simeq \operatorname{map}(c, G(d)) \end{split}$$ This implies that G preserves τ -filtered colimits. **Proposition 3.** Let C be an accessible ∞ -category and let $L: C \to C$ be a localization. The following are equivalent: - (1) L is accessible. - (2) LC is accessible. PROOF. $(1) \Rightarrow (2)$: Assume that L is κ -continuous (= preserves κ -filtered colimits) and \mathcal{C} is κ -accessible. There is $\tau >> \kappa$ such that $L(\mathcal{C}^{\kappa}) \subseteq (L\mathcal{C})^{\tau}$, as \mathcal{C}^{κ} is essentially small. Let \mathcal{C}' be the full subcategory of \mathcal{C} which is spanned by colimits of τ -small κ -filtered diagrams with values in \mathcal{C}^{κ} . Then $L(\mathcal{C}')$ still consists of τ -compact objects in $L\mathcal{C}$, as L preserves κ -filtered colimits and \mathcal{C}^{τ} is closed under τ -small colimits. Every object in \mathcal{C} is a κ -filtered colimit of objects in \mathcal{C}^{κ} . By adding vertices (= cones) to this κ -filtered index category so that it becomes τ -filtered, and extending the diagram by taking τ -small colimits, we can also write an object of \mathcal{C} as a τ -filtered colimit of objects in \mathcal{C}' (see [1, Proposition 4.2.3.4 and the proof of Proposition 5.4.2.9]). As $L:\mathcal{C}\to L\mathcal{C}$ preserves colimits, it follows that $L(\mathcal{C}')$ generates $L\mathcal{C}$ under τ -filtered colimits. (2) \Rightarrow (1): L is the composition of adjoint functors between accessible ∞ -categories, so the claim follows from the preceding lemma. See [1, Proposition 5.5.1.2]. $$\Box$$ **Digression 4** (Idempotent completeness). Let $Idem^+$ be the nerve of the ordinary category with two objects X and Y and morphisms $$\operatorname{Hom}(X,X) = \{\operatorname{id}_X, e\}$$ $\operatorname{Hom}(Y,Y) = \{\operatorname{id}_Y\}$ $\operatorname{Hom}(X,Y) = \{r\}$ $\operatorname{Hom}(Y,X) = \{s\}$ such that $s \circ r = e$ and $e \circ e = e$. Let Idem \subseteq Idem⁺ be the full subcategory spanned by X. We call an ∞ -category \mathcal{C} idempotent complete if the restriction functor $$\operatorname{Fun}(\operatorname{Idem}^+,\mathcal{C}) \to \operatorname{Fun}(\operatorname{Idem},\mathcal{C})$$ is a trivial fibration. See [1, 4.4.5]. We will use the following facts: - (i) For a small ∞ -category \mathcal{C} , there is a fully faithful functor $F: \mathcal{C} \to \mathcal{D}$, where \mathcal{D} is small and idempotent complete, and every object $D \in \mathcal{D}$ is a retract of F(C) for some $C \in \mathcal{C}$. \mathcal{D} is called the **idempotent completion of** \mathcal{C} . See [1, 5.1.4]. - The functor induced by F between the $\operatorname{Ind}_{\kappa}$ -completions is an equivalence of ∞ -categories [1, Proposition 5.5.1.3]. - (ii) An idempotent complete subcategory of an idempotent complete ∞ -category is closed under retracts. PROOF. (of Theorem 1): (See [1, Theorem 5.5.1.1]) $(1)\Rightarrow(2)$ follows from the fact that κ -compact objects are closed under κ -small colimits (which exist in \mathcal{C}) [1, Corollary 5.3.4.15]. $(2)\Rightarrow(3)$ is obvious. $(3)\Rightarrow(4)$ follows from the equivalence $\mathrm{Ind}_{\kappa}(\mathcal{C}^{\kappa})\simeq\mathcal{C}$. $(4) \Rightarrow (5)$: By Digression 4, we may assume that \mathcal{D} is idempotent complete. **Claim:** The Yoneda embedding $j: \mathcal{D} \to \mathcal{P}^{\kappa}(\mathcal{D})$ is a right adjoint. <u>Proof of Claim:</u> According to the results of Subsection 1.1, it suffices to show that for every $F \in \mathcal{P}^{\kappa}(\mathcal{D})$, the functor $\operatorname{map}(F,_) \circ j \colon \mathcal{D} \to \mathcal{S}$ is corepresentable. We know that F is a retract of a colimit of a κ -small diagram of representable functors $I \to \mathcal{P}(\mathcal{D}), i \mapsto j(d_i)$, see [1, Proposition 5.3.4.17]. Thus, $\operatorname{map}(F,_) \circ j$ is a retract of the corepresentable functor $$\lim_{i \in I} \operatorname{map}(j(d_i), j(\underline{\ \ })) \simeq \lim_{i \in I} \operatorname{map}(d_i, \underline{\ \ \ }) \simeq \operatorname{map}(\operatorname{colim}_{i \in I} d_i, \underline{\ \ \ }).$$ As \mathcal{D} is idempotent complete, it follows that a retract of a corepresentable functor is again corepresentable. This completes the proof of the Claim. Note that j is also fully faithful. Let \mathcal{D}' be a small ∞ -category which is equivalent to $\mathcal{P}^{\kappa}(\mathcal{D})$. By applying $\operatorname{Ind}_{\kappa}$ to the adjunction of the Claim, we obtain a new adjunction with a fully faithful right adjoint and a left adjoint: $$L \colon \mathcal{P}(\mathcal{D}) \simeq \operatorname{Ind}_{\kappa}(\mathcal{D}') \rightleftarrows \operatorname{Ind}_{\kappa}(\mathcal{D}) \simeq \mathcal{C}.$$ $(5)\Rightarrow (6)$: Let F and G denote the left and right adjoints of the adjunction in (5). Note that \mathcal{C} is locally small since $\mathcal{P}(\mathcal{D})$ is locally small. We claim that every small diagram $p:I\to\mathcal{C}$ has a colimit. We know that $G\circ p$ has a colimit in $\mathcal{P}(\mathcal{D})$. As F preserves colimits, the composite diagram $FG\circ p$ has a colimit in \mathcal{C} . This diagram is equivalent to p, as FG is equivalent to $\mathrm{id}_{\mathcal{C}}$ (witnessed by the counit transformation). This shows that \mathcal{C} is cocomplete. Let $S := \{F(j(d)) \mid d \in \mathcal{D}\}$. Choose a regular cardinal κ such that G is κ -continuous. Then for all $d \in \mathcal{D}$, $F(j(d)) \in \mathcal{C}$ is κ -compact, because the functor $$\operatorname{map}(F(j(d)), \underline{\hspace{0.1cm}}) \simeq \operatorname{map}(j(d), G(\underline{\hspace{0.1cm}}))$$ commutes with κ -filtered colimits. Moreover, since $\{j(d) \mid d \in \mathcal{D}\}$ generates $\mathcal{P}(\mathcal{D})$ under small colimits, it follows that S also generates \mathcal{C} . $(6)\Rightarrow (1)$: Let $\mathcal{C}'\subseteq \mathcal{C}$ denote the full subcategory of κ -small colimits of diagrams in S. Then \mathcal{C}' consists of κ -compact objects, as those are closed under κ -small colimits. We can rewrite every small colimit of a diagram $p\colon I\to \mathcal{C}$ with values in S as the colimit of a κ -filtered diagram $p'\colon I'\to \mathcal{C}'$ – we may choose I' to be the poset of κ -small subsets of I and define p' by taking colimits. Thus, \mathcal{C} is accessible. See also [1, Theorem 5.5.1.1]. $(6)\Rightarrow (7)$: Let S be a set of κ -compact objects as in (6). We claim that S detects equivalences. Suppose that $u:a\to b$ is a morphism in $\mathcal C$ such that $\operatorname{map}(s,u)$ is an equivalence for every $s\in S$. The class of objects $c\in \mathcal C$ for which $\operatorname{map}(c,u)$ is an equivalence is closed under colimits in $\mathcal C$. It follows that this class contains all the objects of $\mathcal C$, which then implies that u is an equivalence. $(7)\Rightarrow(6)$ – First Proof. (G. Raptis) Let \mathcal{D} be the smallest full subcategory of \mathcal{C} which contains S and is closed under κ -small colimits. Let $c \in \mathcal{C}$ and consider the associated canonical κ -filtered diagram with respect to \mathcal{D} : $$J_c: \mathcal{D}_{/c} \to \mathcal{D} \to \mathcal{C}, \ (d \to c) \mapsto d.$$ We claim that the canonical morphism u: $\operatorname{colim}_{\mathcal{D}/c} J_c \to c$ is an equivalence. By assumption, u an equivalence if $\operatorname{map}_{\mathcal{C}}(s,u)$ is an equivalence for every $s \in S$. By adjunction, it suffices to prove that u has the right lifting property with respect to the morphisms $$s \otimes \partial \Delta^n \to s \otimes \Delta^n$$ for every $s \in S$ and $n \ge 0$. Note that these tensors exist because \mathcal{C} is cocomplete and the morphisms are in \mathcal{D} . Consider a lifting problem in \mathcal{C} of the following form: $$s \otimes \partial \Delta^n \longrightarrow \operatorname{colim}_{\mathcal{D}_{/c}} J_c$$ $$\downarrow \qquad \qquad \downarrow u$$ $$s \otimes \Delta^n \longrightarrow c.$$ Since $s \otimes \partial \Delta^n$ is again κ -compact and $\mathcal{D}_{/c}$ is κ -filtered, the top arrow factors through some stage $J_c(d \to c)$. We may then consider the following pushout in \mathcal{C} The morphism $(d' \to c)$ defines an object in $\mathcal{D}_{/c}$. So, by definition, this morphism factors canonically through u giving the required lift in our original lifting problem. Second Proof. (D.–C. Cisinski) Let $\mathcal{C}^{\kappa} \subseteq \mathcal{C}$ be the full subcategory of κ -compact objects. Then \mathcal{C}^{κ} contains S and is closed under κ -small colimits. Let $c \in \mathcal{C}$ and consider the associated canonical κ -filtered diagram with respect to \mathcal{C}^{κ} : $$J_c \colon \mathcal{C}^{\kappa}_{/c} \to \mathcal{C}^{\kappa} \to \mathcal{C}$$. We claim that the canonical morphism $\operatorname{colim}_{\mathcal{C}_{/c}^{\kappa}} J_c \to c$ is an equivalence. For every $s \in S$, we have a canonical equivalence: $$\operatorname{map}(s, \operatorname{colim}_{\mathcal{C}_{/c}^{\kappa}} J_c) \simeq \operatorname{colim}_{\mathcal{C}_{/c}^{\kappa}} \operatorname{map}(s, J_c(\underline{}))$$ because s is κ -compact. Moreover, there is a canonical equivalence: $$\operatorname{colim}_{(c' \to c) \in \mathcal{C}_{/c}^{\kappa}} \operatorname{map}(\underline{\hspace{0.3cm}}, c') \simeq \operatorname{map}(\underline{\hspace{0.3cm}}, c)$$ using the density of the Yoneda embedding for C^{κ} and the Yoneda Lemma for C. Since S detects equivalences, the required result follows. Corollary 5. Let \mathcal{C} be a presentable ∞ -category. Then \mathcal{C} is complete. PROOF. By Theorem 1(5), we may assume that \mathcal{C} is the full subcategory of local objects in $\mathcal{P}(\mathcal{D})$ with respect to a localization $L \colon \mathcal{P}(\mathcal{D}) \rightleftarrows \mathcal{C} \colon i$. Let $p \colon I \to \mathcal{C}$ be a small diagram. Local objects are closed under limits in $\mathcal{P}(\mathcal{D})$, hence the limit of the diagram $i \circ p$ in $\mathcal{P}(\mathcal{D})$ is again local. Since i is fully faithful, the limit cone of $i \circ p$ factors through i and defines a limit cone also in \mathcal{C} . See also [1, Corollary 5.5.2.4] and [2, Corollary 4.1.5]. \Box # 3. Adjoint Functor Theorems **Proposition 6.** Let C be a presentable ∞ -category and let $F: C^{op} \to S$ be a functor. Then the following are equivalent: - (1) F is representable. - (2) F preserves small limits. PROOF. See [1, Proposition 5.5.2.2]. (1) \Rightarrow (2): F is identified with the Yoneda embedding $C^{op} \to \mathcal{P}(C^{op})$ followed by the evaluation functor at the representing object. Both of these functors preserve all small limits. (2) \Rightarrow (1): We first treat the case $\mathcal{C} = \mathcal{P}(\mathcal{D})$ for some small ∞ -category \mathcal{D} . Let $$(f:\mathcal{D}^{op} \overset{j^{op}}{\rightarrow} \mathcal{P}(\mathcal{D})^{op} \overset{F}{\rightarrow} \mathcal{S}) \in \mathcal{P}(\mathcal{D})$$ Then F is agrees with map($_, f$), as both functors preserve small limits and their restrictions to \mathcal{D} agree by the Yoneda Lemma. Now let \mathcal{C} be an arbitrary presentable ∞ -category. Let $L: \mathcal{P}(\mathcal{D}) \to \mathcal{C}$ be a localization as in Theorem 1 (5). Let S be the collections of morphisms in $\mathcal{P}(\mathcal{D})$ which map to equivalences under L. We may assume that \mathcal{C} is the full subcategory of S-local objects. The composite functor $$\mathcal{P}(\mathcal{D})^{\mathrm{op}} \stackrel{L^{\mathrm{op}}}{\to} \mathcal{C}^{\mathrm{op}} \stackrel{F}{ o} \mathcal{S}$$ preserves small limits and therefore it is represented by some object $f \in \mathcal{P}(\mathcal{D})$. Then it suffices to show that f is S-local. This holds because the representable functor FL^{op} factors through C^{op} . We also have the following dual version of the above proposition. This is a special case of Theorem 8(2) below. See also [1, Proposition 5.5.2.7]. **Proposition 7.** Let C be a presentable ∞ -category and let $F: C \to S$ be a functor. Then the following are equivalent: - (1) F is corepresentable. - (2) F preserves limits and is accessible. **Theorem 8.** Let \mathcal{C} and \mathcal{D} be presentable ∞ -categories and let $F: \mathcal{C} \to \mathcal{D}$ be a functor. Then: - (1) F has a right adjoint $\Leftrightarrow F$ preserves small colimits. - (2) F has a left adjoint $\Leftrightarrow F$ preserves small limits and is accessible. PROOF. See [1, Corollary 5.5.2.9] and [2, Section 4]. - (1) " \Rightarrow ": This is always true [1, Proposition 5.2.3.5]. " \Leftarrow ": Using the characterization in Subsection 1.1, it suffices to prove that for every representable functor $\mathcal{D}^{op} \to \mathcal{S}$, the composite $\mathcal{C}^{op} \xrightarrow{F^{op}} \mathcal{D}^{op} \to \mathcal{S}$ is again representable. This follows easily from Proposition 6. - (2) "⇒": Right adjoints preserve small limits (see [1, Proposition 5.2.3.5]). F is also accessible by Proposition 2. "⇐": (see [2, Section 4]) According to Subsection 1.1, it suffices to show that for every $d \in \mathcal{D}$, the ∞ -category $\mathcal{C}_{d/}$ has a weakly initial set, given that the following two assertions hold: - $\mathcal{C}_{d/}$ is locally small as it is a pullback of locally small categories. - $C_{d/}$ is complete as it is a (homotopy) pullback of limit-preserving functors between complete categories (see Corollary 5 and apply [1, Lemma 5.4.5.5]). Let κ be a regular cardinal such that \mathcal{C} is κ -accessible, F is κ -continuous and d is κ -compact. Let $\mathcal{C}' \subseteq \mathcal{C}^{\kappa}$ be a small full subcategory such that the inclusion is an equivalence. Let $S \colon = \{(c, \alpha : d \to F(c)) \mid c \in \mathcal{C}'\}$ be a set of objects in $\mathcal{C}_{d/}$. Using the fact that every object in \mathcal{C} is κ -filtered colimit of κ -compact objects and our assumptions on κ , it follows that for every $(c, d \to F(c))$ in $\mathcal{C}_{d/}$, there is a morphism from an object in S. PROOF. (of Proposition 7): $(1)\Rightarrow(2)$: Suppose that F is corepresented by the object $c\in\mathcal{C}$. Then F is identified with the composition $\mathcal{C}\stackrel{j}{\to}\mathcal{P}(\mathcal{C})\stackrel{ev_c}{\to}\mathcal{S}$ and therefore it preserves limits. Moreover, we may choose a κ such that c is κ -compact, which then means that F preserves κ -filtered colimits. $(2)\Rightarrow(1)$: By Theorem 8(2), F admits a left adjoint L. Then there are canonical equivalences: $$F(x) \simeq \operatorname{map}_{\mathcal{S}}(*, F(x)) \simeq \operatorname{map}_{\mathcal{C}}(L(*), x).$$ Therefore F is corepresented by the object L(*). #### References - Jacob Lurie, Higher topos theory. Annals of Mathematics Studies, Vol. 170. Princeton University Press, Princeton, NJ, 2009. - Online revised version: www.math.harvard.edu/~lurie/papers/highertopoi.pdf - [2] H.K. Nguyen, G. Raptis, C. Schrade, Adjoint functor theorems for ∞-categories. J. London Math. Soc. (to appear). arXiv: https://arxiv.org/abs/1803.01664