
PRESENTABLE ∞-CATEGORIES – II
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1. Saturated Collections of Morphisms

Definition 1.1. Let C be an ∞-category and let S be a collection of morphisms in
C. We call S (strongly) saturated if

(1) S is closed under small colimits in Fun(∆1, C).
(2) – (saturated) S contains all equivalences and is closed under composition.

– (strongly saturated) S has the 2-out-of-3 property.
(3) S is closed under pushouts in C.

Clearly the intersection of (strongly) saturated collections of morphisms is again
(strongly) saturated. Therefore for every collection S of morphisms in C, there is
a smallest (strongly) saturated collection S ⊆ S, called the (strongly) saturated
closure of S. If for a (strongly) saturated collection S there is a small set S0 such
that S0 = S, we say that S is of small generation.

Remark 1.2. If C is cocomplete, then a strongly saturated collection S contains all
equivalences, as these are pushouts of id∅ in C. In particular, S is saturated. Also,
the collection of all equivalences in C is (strongly) saturated.

Remark 1.3. Let C,D be cocomplete ∞-categories and let F : C → D be a colimit-
preserving functor. Then the preimage of a (strongly) saturated collection S in D
under the functor F is again (strongly) saturated.

Definition 1.4. Let C be a cocomplete∞-category and S a collection of morphisms
in C. Then a morphism f : x→ y in C is called a S-equivalence if for every S-local
object z ∈ C, the induced map:

map(y, z) ∼→ map(x, z)
is an equivalence.

Lemma 1.5. Let S be collection of morphisms in a cocomplete∞-category C. Then
the collection of S-equivalences is strongly saturated.

Proof. See [2, Lemma 5.5.4.11]. The collection of S-equivalences is the intersection
of the preimages of equivalences under the functors map(_, z) for every S-local
object z ∈ C. Note that these functors send colimits in C to limits. �

2. Localizations of Presentable ∞-Categories

Theorem 2.1. Let C be presentable ∞-category, S a set of morphisms in C, S its
strongly saturated closure, and let C′ ⊆ C denote the full subcategory of S-local
objects. Then:

(1) For every C ∈ C, there exists a morphism s : C → C ′ in S where C ′ ∈ C′.
(2) The inclusion i : C′ ⊆ C has a left adjoint L : C → C′.
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(3) For every morphism f in C the following are equivalent:
(a) f is an S-equivalence.
(b) f ∈ S.
(c) Lf is an equivalence.

(4) C′ is presentable.

Lemma 2.2. Let C be a presentable ∞-category, S a saturated collection of mor-
phisms in C, and let D ⊆ Fun(∆1, C) denote the full subcategory generated by S.
The following are equivalent:

(1) S is of small generation.
(2) The full subcategory D ⊆ Fun(∆1, C) is presentable.

Proof. See [2, Lemma 5.5.5.9]. (2)⇒(1): D is generated under small colimits by a
(small) set of morphisms.

(1)⇒(2): The strategy of proof is different from the one in [2, Lemma 5.5.5.9] and
is based on [1, Theorem 1(7)]. Let S0 ⊆ C be a small collection of morphisms whose
saturated closure is S. Let κ be a regular cardinal such that C is κ-accessible. Then
the full subcategory of κ-compact objects Cκ is essentially small, and we may assume
without loss of generality that S0 contains the morphism idx for every x ∈ Cκ. Using
one of the characterizations of presentable ∞-categories [1, Theorem 1], it suffices
to show that S0 detects equivalences. (Note that every object of Fun(∆1, C) is
λ-compact for some λ and D ⊆ Fun(∆1, C) is closed under colimits.)

Let u : f1 → f2 be a morphism in D such that for every s ∈ S0, the morphism

map(s, u) : map(s, f1)→ map(s, f2)

is an equivalence. Then it suffices to show that this is also true for every s ∈ S.
Consider the collection of morphisms

T := {f ∈ S | map(f, u) is an equivalence}.

We know that S0 ⊆ T , therefore it suffices to show:

Claim. T is saturated.

Before we prove this claim, we first recall some general facts and make some useful
observations:

(i) We can describe the mapping spaces in C∆1 as follows: given f, g ∈ C∆1 we have
a canonical equivalence

mapC∆1 (f, g) ' mapC(dom(f),dom(g))×mapC(cod(f), cod(g))
mapC(dom(f),cod(g))

(*)

where the right space is a pullback in the ∞-category of spaces. This is can be seen
by using the definition of the mapping space as a pullback of the diagram

mapC(x, y) C∆1

∆0 C × C
(x, y)

(dom, cod)

together with the following (homotopy) pullback diagram:
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mapC∆1 (h, idx) C∆2

∆0 C∆1 × C.
(h, x)

Then we obtain an equivalence:
mapC∆1 (f, g) ' mapC∆1 (f, idcod(g))×map(iddom(f), g)

mapC(dom(f),cod(g))

by looking at the fibres of the following equivalent morphisms:

(C∆1∆1

−→ C∆1
× C∆1

) ' (C∆2
×C∆1 C∆2

−→ (C∆1
× C)×C×C (C × C∆1

)).

(ii) Let f, g ∈ C∆1 and assume that f is an equivalence. Then composition with f
induces an equivalence between mapping spaces:

mapC(cod(f), cod(g)) '→ mapC(dom(f), cod(g)).

So the equivalence (*) implies that restricting to the domain induces an equivalence
mapC∆1 (f, g) ' mapC(dom(f),dom(g)).(**)

(iii) Applying (**) to the special case where f = idx for x ∈ C, we get
mapC∆1 (idx, g) ' mapC(x, dom(g))

and this equivalence is natural in g. Thus, since idx ∈ S0 for every x ∈ Cκ, the
morphism u : f1 → f2 induces an equivalence

mapC(x, dom(f1)) ' mapC(x,dom(f2))
for every x ∈ Cκ. As Cκ detects equivalences in C, it follows that u restricts to an
equivalence between the domains:

dom(f1) ' dom(f2)(***)

Proof of the Claim. We can now prove that T is saturated:

(1) T is stable under small colimits in C∆1 : Let F : K → C∆1 be a diagram such
that F (k) ∈ T for every k ∈ K. We have an equivalence

mapC∆1 (colimk∈K(F (k)), u) ' lim
k∈K

(mapC∆1 (F (k), u)).

Thus, mapC∆1 (colimk∈K(F (k)), u) is a limit of equivalences and hence again an
equivalence, so colimk∈K(F (k)) lies again in T .
(2) T contains the equivalences: For an equivalence f , the map mapC(f, u) is by
(**) equivalent to mapC(dom(f),dom(u)), which is an equivalence by (***).
(3) T is stable under pushouts: Consider a pushout in C

a b

x y

f

f ′
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where f lies in T . For any h ∈ C∆1 , we have a natural pullback
mapC(y, cod(h)) ' mapC(x, cod(h))×mapC(a,cod(h)) mapC(b, cod(h)).

Combining this with the equivalence (*), we obtain natural equivalences:

map(f ′, h)
(∗)
' mapC(x, dom(h))×mapC(y, cod(h))

mapC(x,cod(h))

' mapC(x, dom(h))× (mapC(x, cod(h))×mapC(b, cod(h)))
mapC(x,cod(h)) mapC(a,cod(h))

' mapC(x, dom(h))×mapC(b, cod(h))
mapC(a,cod(h))

' mapC(x, dom(h))× (mapC(a, dom(h))×mapC(b, cod(h)))
mapC(a,dom(h)) mapC(a,cod(h))

(∗)
' mapC(x, dom(h))×mapC∆1 (f, h)

mapC(a,dom(h))
.

It follows that map(f ′, u) is an equivalence because it can be identified with the
equivalence (this uses (***)):

mapC(x, dom(f1))×mapC∆1 (f, f1)
mapC(a,dom(f1))

' mapC(x, dom(f2))×mapC∆1 (f, f2)
mapC(a,dom(f2))

.

�

Lemma 2.3. Left fibrations preserve colimits indexed by weakly contractible sim-
plicial sets.

Proof. See [2, Proposition 4.4.2.9]. �

Lemma 2.4. Let C and S be as in Lemma 2.2 and let X ∈ C be an object. Then
the full subcategory D ⊆ CX/ spanned by the elements in S is closed under small
colimits. (Here CX/ ' CX/ denotes the alternative slice construction of [2, 4.2.1].)

Proof. See [2, Lemma 5.5.5.11]. D admits κ-small colimits if and only if D admits
finite colimits and κ-small filtered colimits by [2, Corollary 4.2.3.11]. It admits finite
colimits if and only if it admits pushouts and has an initial object by [2, Corollary
4.4.2.4]. Hence it suffices to show that D contains an initial object of CX/ and is
closed under colimits indexed by a small weakly contractible simplicial set K (take
K = Λ2

0 or K filtered).
(i) The initial objects in CX/ are the equivalences. These are contained in S by

definition.
(ii) Consider a diagram p : K. → CX/, which is a colimit of p := p|K , and p

is a diagram in D. By the construction of the alternative slice CX/, this
corresponds to a map

P : K. ×∆1 → C
such that P |K.×{0} = constX and P |K.×{1} = (CX/ → C) ◦ p. Both of these
two restrictions are colimit diagrams: The first one because K ⊆ K. is left
anodyne, and thus cofinal, and the second one by Lemma 2.3. It follows
that P is a colimit diagram in Fun(∆1, C). Since S is closed under colimits,
we conclude that p is also a diagram in D. �

Lemma 2.5. Let C and S be as in Lemma 2.2 and assume that S is of small
generation. Then for every object X ∈ C, there exists a morphism t : X → Y in S
such that Y is S-local.
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Proof. See [2, Lemma 5.5.5.14]. Let D ⊆ Fun(∆1, C) be the full subcategory
spanned by S. Consider the pullback defined by

DX D

∆0 Fun({0}, C)X
or equivalently by

DX D

CX/ C∆1

The ∞-category DX ⊆ CX/ is cocomplete (similarly to the proof of Lemma 2.4).

Claim. The ∞-category DX is accessible.

Proof of the Claim. The functor D → Fun({0}, C) is a categorical fibration. To see
this, consider a lifting problem:

{0} D

∆1 C

f

g

↔
• •

• •
g

f

∈ D∆1

Then we get a diagram as in the right square by taking the pushout in C. If g is
an equivalence, then the resulting square defines an equivalence in C∆1 . Note that
∆0, C and D are accessible by assumption and Lemma 2.2. Moreover, the functor
D → C is accessible, as S is closed under colimits in C∆1 . The functor X : ∆0 → C
is also accessible, as κ-filtered colimits are weakly contractible (and using the same
argument as in the proof of Lemma 2.4). Then we conclude that DX is accessible
using the left pullback square above and [2, Proposition 5.4.6.6]. �

Therefore DX is presentable, and hence has a terminal object X t→ Y . Then it
remains to show that Y is S-local. Let f : A → B be a morphism in S. For any
g : A→ Y , we form the pushout

A B

Y Z

g

f

f ′
g′

and obtain pullback squares:

mapCA/
(f, g) ∆0

mapC(Z, Y ) mapC(Y, Y )

mapC(B, Y ) mapC(A, Y )

f ′
∗

idY

f∗
g∗g′

∗

(*)
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Hence mapCA/
(f, g) ' mapCY/

(f ′, idY ). It suffices to show that this mapping space
is contractible. Consider a 2-simplex σ in C witnessing that a morphism t′ : X → Z
is the compostion of t and f ′. Then we have a pullback:

mapCY/
(f ′, idY ) ' mapCt/

(σ, idt) ∆0

mapCX/
(t′, t) mapCX/

(t, t).σ∗

idt

The morphism t′ is in S because it is a composition of an element in S with the
pushout of an element in S. Therefore the lower mapping spaces are mapping spaces
in DX , where t is terminal. Hence σ∗ is an equivalence and thus mapCA/

(f, g) '
mapCY/

(f ′, idY ) is contractible. So, the lowest horizontal map in diagram (∗) is an
equivalence as required. �

Proof. (of Theorem 2.1) See [2, Proposition 5.5.4.15]. (1) follows from Lemma 2.5.
(2): For C ∈ C, we set LC := C ′ ∈ C′ and tC : C → iLC in S (Lemma 2.5). Then
for every D ∈ D:

mapC′(LC,D) ' mapC(iLC, iD) ' mapC(C, iD)

where the last equivalence comes from the fact that D is S-local. This property
suffices to construct a left adjoint L : C → C′ sending C to LC.

(3) “(b)⇒ (a)”: By Lemma 1.5 it suffices to see that S ⊆ {S− equivalences}, which
is clear. (3)“(c)⇒ (b)”: Consider the diagram

X Y

LX LY

f

Lf

The vertical maps lie in S by the construction of L in (2). By the 2-out-of-3 property,
f lies in S. (3) “(a)⇒ (c)”: We consider the same diagram:

X Y

LX LY

f

Lf

The vertical maps are in S and therefore they are S-equivalences by (b) ⇒ (a).
By the 2-out-of-3 property, Lf is also an S-equivalence. But then the natural
transformation between the corepresentable functors:

Lf∗ : mapC′(LY,_)→ mapC′(LX,_)

is an equivalence, and therefore Lf : LX → LY is an equivalence by the Yoneda
Lemma.
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(4): We outline a proof which is different from the proof in [2, Proposition 5.5.4.15(2)].
Let X be an S-local object. Then for any S-equivalence s, the map map(s,X) is an
equivalence. By (3), X is also S-local. This proves that C′ is the full subcategory of
S-local objects. It is thus the following pullback:

C′ S'

C S∆1
φ

ψ

where S denotes the ∞-category of spaces, ψ is the inclusion of the equivalences in
S, and φ is defined by

φ(X) =
∐

(A→B)∈S

(map(B,X)→ map(A,X))

which is well-defined because S is a set of morphisms. Note that the map S → S'
sending x to idx is an equivalence. To summarize, we have:

(i) C,S∆1 and S' are presentable ∞-categories.
(ii) As S is a set of morphisms, can choose a cardinal κ, such that the domain

and the codomain of every morphism in S is κ-compact in C. Then φ is
κ-accessible.

(iii) ψ preserves colimits as these are computed pointwise in S∆1 .
Then it follows that C′ is accessible [2, Proposition 5.4.6.6]. In particular, it is
an accessible localization of a presentable ∞-category and therefore it is again
presentable. �

Proposition 2.6. Let C be a presentable ∞-category, S a set of morphisms, and
L : C → S−1C the localization functor of Theorem 2.1. Let D be an ∞-category.
Then L∗ : FunL(S−1C,D) → FunL(C,D) is fully faithful and its essential image
consists of those f : C → D sending S to equivalences in D. (Here FunL(−,−)
denotes the ∞-category of functors which preserve small colimits.)

Proof. See [2, Proposition 5.5.4.20]. The functor is the restriction of the functor
L∗ : Fun(S−1C,D)→ Fun(C,D), which is fully faithful, as S−1C is a localization.
Hence it is again fully faithful and we are left to show the part about the essential
image, i.e., im(L∗) = {F ∈ FunL(C,D) | ∀s ∈ S, f(s) is an equivalence}.
“⊆”: This is clear, as the functor L carries S to equivalences in S−1C.
“⊇”: Let F : C → D be a colimit-preserving functor which carries S to equiv-

alences in D. The unit of the adjunction α : id → iL induces a natural
transformation F → F ◦ (iL). We will be done if we show that this natural
transformation is an equivalence.
Let S′ := {φ | F (φ) is an equivalence}. This is strongly saturated by Remark
2 and also contains S. Therefore S ⊆ S′. Since αX ∈ S for every object X
in C, it follows that F (αX) is an equivalence as required.

�



8 P. BÄRNREUTHER

3. Factorization Systems

Definition 3.1. Let f : A→ B and g : X → Y be two morphisms in an∞-category
C. We say that f is orthogonal to g (and write f ⊥ g) if for every diagram

A X

B Y

f g

The space of lifting solutions mapCA//Y
(B,X) is contractible.

Lemma 3.2. Let f : A→ B and g : X → Y be two morphisms in an ∞-category
C. Then the following are equivalent:

(1) f ⊥ g.
(2) For every morphism f : α→ β in C/Y whose underlying morphism in C is

f , the induced map

mapC/Y (β,g)
f
∗

→ mapC/Y (α,g)

is an equivalence.

Proof. See [2, Remark 5.2.8.3]. Given a diagram

A X

B Y

f

j

β

g

we can restrict to the triangle f :

A

B Y

f
α

β

and then observe that mapCA//Y
(B,X) is the homotopy fibre of the map in (2). �

Definition 3.3. Let C be an∞-category and let SL, SR be collections of morphisms
in C. We say that (SL, SR) is a factorization system if the following are satisfied:

(1) SL and SR are closed under retracts.
(2) SL ⊥ SR.
(3) For every h : X → Z in C, there is a factorization h : X f→ Y

g→ Z with
f ∈ SL and g ∈ SR.

Exercise 3.4. Let (SL, SR) be a factorization system in C. Show that SL is
saturated. (Hint: Use Lemma 3.2.)

Given a collection S of morphisms in C, we denote by S⊥ the collection of the
morphisms in C which are orthogonal to every morphism in S,

S⊥ := {g : X → Y | ∀s ∈ S : s ⊥ g}.
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Theorem 3.5. Let C be a presentable ∞-category and S a saturated collection of
small generation in C. Then (S, S⊥) is a factorization system in C.

Lemma 3.6. Under the assumptions of Theorem 3.5, we have that for every X ∈ C,
the collection of morphisms in C/X

SX := (C/X → C)−1(S)
is also a saturated collection of small generation.

Proof. See [2, Lemma 5.5.5.10]. SX is again saturated by Remark 1.3. Consider
the pullback

D′ C∆1

/X

D C∆1

where D denotes the full subcategory of C∆1 spanned by S. Then D′ is the full
subcategory of C∆1

/X spanned by SX . Applying Lemma 2.2, we only need to show that
D′ is presentable. Using the properties of pullbacks with respect to cocompleteness
and accessibility (see [2, Proposition 5.5.3.12]), this is then a consequence of the
following observations:

(i) D is presentable by Lemma 2.2. C∆1 and C∆1

/X are presentable because C is
(see [2, Proposition 5.5.3.6] and [2, Proposition 5.5.3.10]).

(ii) D → C∆1 preserves small colimits, as S is saturated. C∆1

/X → C
∆1 preserves

small colimits. �

Proof. (of Theorem 3.5) See [2, Proposition 5.5.5.7]. Both collections of morphisms
are closed under retracts, so (1) X. Clearly S ⊥ S⊥, so (2) X. For (3), let h : X → Z

be a morphism in C. Then finding a factorization X
f→ Y

g→ Z with f ∈ S and
g ∈ S⊥ is the same as finding a morphism f : h→ g in C/Z such that f ∈ SZ and
g ∈ S⊥. Furthermore, using Lemma 3.2, we deduce that g ∈ S⊥ if and only if g is
SZ-local. So we get the desired factorization by applying Lemma 2.5 to (C/Z , SZ),
which we can do by Lemma 3.6, so also (3)X. �
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