PRESENTABLE oco-CATEGORIES — II

P. BARNREUTHER

1. SATURATED COLLECTIONS OF MORPHISMS

Definition 1.1. Let C be an oco-category and let S be a collection of morphisms in
C. We call S (strongly) saturated if

(1) S is closed under small colimits in Fun(Al,C).

(2)  — (saturated) S contains all equivalences and is closed under composition.
— (strongly saturated) S has the 2-out-of-3 property.

(3) S is closed under pushouts in C.

Clearly the intersection of (strongly) saturated collections of morphisms is again
(strongly) saturated. Therefore for every collection S of morphisms in C, there is
a smallest (strongly) saturated collection S C S, called the (strongly) saturated
closure of S. If for a (strongly) saturated collection S there is a small set Sy such
that So = S, we say that S is of small generation.

Remark 1.2. If C is cocomplete, then a strongly saturated collection S contains all
equivalences, as these are pushouts of idy in C. In particular, S is saturated. Also,
the collection of all equivalences in C is (strongly) saturated.

Remark 1.3. Let C, D be cocomplete co-categories and let F' : C — D be a colimit-
preserving functor. Then the preimage of a (strongly) saturated collection S in D
under the functor F' is again (strongly) saturated.

Definition 1.4. Let C be a cocomplete oo-category and S a collection of morphisms
in C. Then a morphism f: 2z — y in C is called a S-equivalence if for every S-local
object z € C, the induced map:

map(y, z) — map(x, 2)
is an equivalence.

Lemma 1.5. Let S be collection of morphisms in a cocomplete co-category C. Then
the collection of S-equivalences is strongly saturated.

PROOF. See [2, Lemma 5.5.4.11]. The collection of S-equivalences is the intersection
of the preimages of equivalences under the functors map(_,z) for every S-local
object z € C. Note that these functors send colimits in C to limits. (]

2. LOCALIZATIONS OF PRESENTABLE co-CATEGORIES

Theorem 2.1. Let C be presentable co-category, S a set of morphisms in C, S its
strongly saturated closure, and let C' C C denote the full subcategory of S-local
objects. Then:

(1) For every C € C, there exists a morphism s : C — C' in S where C' € C'.
(2) The inclusion i: C' C C has a left adjoint L: C — C'.
1



2 P. BARNREUTHER

(3) For every morphism f in C the following are equivalent:
(a) f is an S-equivalence.

(b) fes.
(c) Lf is an equivalence.
(4) C' is presentable.

Lemma 2.2. Let C be a presentable co-category, S a saturated collection of mor-
phisms in C, and let D C Fun(A*,C) denote the full subcategory generated by S.
The following are equivalent:

(1) S is of small generation.

(2) The full subcategory D C Fun(A',C) is presentable.

PROOF. See |2, Lemma 5.5.5.9]. (2)=-(1): D is generated under small colimits by a
(small) set of morphisms.

(1)=(2): The strategy of proof is different from the one in |2, Lemma 5.5.5.9] and
is based on [1, Theorem 1(7)]. Let Sy C C be a small collection of morphisms whose
saturated closure is S. Let x be a regular cardinal such that C is k-accessible. Then
the full subcategory of xk-compact objects C” is essentially small, and we may assume
without loss of generality that Sy contains the morphism id, for every x € C*. Using
one of the characterizations of presentable co-categories [1, Theorem 1], it suffices
to show that Sy detects equivalences. (Note that every object of Fun(A!,C) is
A-compact for some A and D C Fun(A,C) is closed under colimits.)

Let u: fi — f2 be a morphism in D such that for every s € Sy, the morphism
map(s,u): map(s, fi) — map(s, f2)

is an equivalence. Then it suffices to show that this is also true for every s € S.
Consider the collection of morphisms

T:={f €S |map(f,u) is an equivalence}.
We know that Sy C T, therefore it suffices to show:
Claim. T is saturated.

Before we prove this claim, we first recall some general facts and make some useful
observations:

(i) We can describe the mapping spaces in cA" as follows: given f,g € CA" we have
a canonical equivalence

(*) mapea1 (f,g) = mape(dom(f), dom(g)) x mapg(cod(f), cod(g))
map (dom(f),cod(g))

where the right space is a pullback in the co-category of spaces. This is can be seen
by using the definition of the mapping space as a pullback of the diagram

mape (z,y) —— ¢2'

J J(dom,cod)
A0 ﬂ CxC

together with the following (homotopy) pullback diagram:
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map.at (h,id,) —— oA?

| o |

)

A ——— A e

Then we obtain an equivalence:

mapeat (f, ) = mapear (f,1deod(g)) X map(idaom(s): 9)
map¢ (dom(f),cod(g))

by looking at the fibres of the following equivalent morphisms:
Al 1 1
(€27 A XA = (CP xpar €27 — (€21 X C) xexe (Cx CAY).

(ii) Let f,g € CA" and assume that f is an equivalence. Then composition with f
induces an equivalence between mapping spaces:

mape (cod(f), cod(g)) = mape (dom(f), cod(g)).

So the equivalence @ implies that restricting to the domain induces an equivalence
(**) mapeat (f,9) ~ mape(dom(f),dom(g)).
(iii) Applying @) to the special case where f =id, for € C, we get

mapeat (ids, g) ~ mape (z,dom(g))

and this equivalence is natural in g. Thus, since id, € Sy for every = € C*, the
morphism u : f; — f5 induces an equivalence

mape(x,dom(f1)) ~ mape(x,dom(f2))

for every x € C*. As C" detects equivalences in C, it follows that u restricts to an
equivalence between the domains:

(**%) dom(f1) ~ dom(fs)

Proof of the Claim. We can now prove that 7" is saturated:

(1) T is stable under small colimits in CA': Let F: K — CA" be a diagram such
that F'(k) € T for every k € K. We have an equivalence

map,at (colimpe i (F(K)),u) ~ %ier%(mapcAl (F(k),u)).
Thus, mapyat (colimpe i (F(k)),u) is a limit of equivalences and hence again an
equivalence, so colimge i (F'(k)) lies again in T.

(2) T contains the equivalences: For an equivalence f, the map mapg(f,u) is by
() equivalent to mape(dom(f),dom(u)), which is an equivalence by

(3) T is stable under pushouts: Consider a pushout in C

|

f
—
I
—

L/
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where f lies in 7. For any h € CAI, we have a natural pullback

mape(y, cod(h)) ~ map¢(z, cod(h)) X mape (a,cod(h)) mape (b, cod(h)).

Combining this with the equivalence @, we obtain natural equivalences:

map(f', h) B mape (. dom(h)) x mape(y, cod(h))
mapc (x,cod(h))

~ map,(z,dom(h)) x (map¢(z,cod(h)) x map. (b, cod(h)))
mapc (z,cod(h)) mapc (a,cod(h))

~ map,(z,dom(h)) X map. (b, cod(h))
mapc (a,cod(h))

~ map, (z,dom(h)) X (map¢(a,dom(h)) x map. (b, cod(h)))
mape (a,dom(h)) mapc (a,cod(h)

mape (x,dom(h)) x map a1 (f,h).

mapg (a,dom(h))

It follows that map(f’,u) is an equivalence because it can be identified with the
equivalence (this uses :

mapc (z, dom(f1)) X map a1 (f, f1) ~ mape(z,dom(f2)) X map,a1 (f, f2).
mapc (a,dom(f1)) mapc (a,dom(f2))

]

Lemma 2.3. Left fibrations preserve colimits indexed by weakly contractible sim-
plicial sets.

PROOF. See |2, Proposition 4.4.2.9]. O

Lemma 2.4. Let C and S be as in Lemma (2.9 and let X € C be an object. Then
the full subcategory D C CX/ spanned by the elements in S is closed under small
colimits. (Here C*/ ~ Cy, denotes the alternative slice construction of |2, 4.2.1].)

PROOF. See |2, Lemma 5.5.5.11]. D admits k-small colimits if and only if D admits
finite colimits and k-small filtered colimits by |2, Corollary 4.2.3.11]. It admits finite
colimits if and only if it admits pushouts and has an initial object by [2, Corollary
4.4.2.4]. Hence it suffices to show that D contains an initial object of C*/ and is
closed under colimits indexed by a small weakly contractible simplicial set K (take
K = A} or K filtered).
(i) The initial objects in CX/ are the equivalences. These are contained in S by
definition.
(ii) Consider a diagram p : K* — C*/, which is a colimit of p = p|x, and p
is a diagram in D. By the construction of the alternative slice CX/, this
corresponds to a map

P:K"xA'—C
such that P|g»y 0y = consty and P|gex 13 = (CX/ — C) op. Both of these
two restrictions are colimit diagrams: The first one because K C K" is left
anodyne, and thus cofinal, and the second one by Lemma [2.3] It follows

that P is a colimit diagram in Fun(A!,C). Since S is closed under colimits,
we conclude that p is also a diagram in D. ([l

Lemma 2.5. Let C and S be as in Lemma and assume that S is of small
generation. Then for every object X € C, there exists a morphismt: X —Y in S
such that Y is S-local.
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PRrROOF. See [2, Lemma 5.5.5.14]. Let D C Fun(A',C) be the full subcategory
spanned by S. Consider the pullback defined by

Dx — D Dx —— D
J J or equivalently by J J
AV —— Fun({0},C) Cx) — A’

The oco-category Dx C Cx/, is cocomplete (similarly to the proof of Lemma .
Claim. The oo-category Dx is accessible.

Proof of the Claim. The functor D — Fun({0},C) is a categorical fibration. To see
this, consider a lifting problem:

f

{0} —o [/,
l J{ — lg S DAl
Al'% i C y re

Then we get a diagram as in the right square by taking the pushout in C. If g is
an equivalence, then the resulting square defines an equivalence in CA". Note that
AP, C and D are accessible by assumption and Lemma Moreover, the functor
D — C is accessible, as S is closed under colimits in C2 . The functor X: A? — C
is also accessible, as s-filtered colimits are weakly contractible (and using the same
argument as in the proof of Lemma . Then we conclude that Dx is accessible
using the left pullback square above and |2 Proposition 5.4.6.6]. (]

Therefore Dy is presentable, and hence has a terminal object X LY. Then it
remains to show that Y is S-local. Let f: A — B be a morphism in S. For any

g: A — Y, we form the pushout
f
A—— B
g q
f/
Y — 7

and obtain pullback squares:

mape, (f,9) ————— A°

l - Jidy

mape(Z,Y) —— mape (YY) (*)

b

mape(B,Y) ——— mape(4,Y)
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Hence mapg , , (f,9) ~ mape, , (f',idy). It suffices to show that this mapping space
is contractible. Consider a 2-simplex ¢ in C witnessing that a morphism ¢’ : X — Z
is the compostion of ¢ and f’. Then we have a pullback:

mape, (f',idy) =~ mapct/(a, idy)) ———3 A0

L

mape (', t) AN mape, , (t,1).

The morphism ¢’ is in S because it is a composition of an element in S with the
pushout of an element in S. Therefore the lower mapping spaces are mapping spaces
in Dx, where ¢ is terminal. Hence ¢* is an equivalence and thus mapc, (f,g) ~

mape, ( f’,idy) is contractible. So, the lowest horizontal map in diagram (x) is an
equivalence as required. O

PROOF. (of Theorem [2.1)) See [2| Proposition 5.5.4.15]. (1) follows from Lemma 2.5
(2): For C € C, we set LC :=C" € C' and t¢: C — iLC in S (Lemma . Then
for every D € D:

mape, (LC, D) ~ map(iLC,iD) ~ map.(C, iD)

where the last equivalence comes from the fact that D is S-local. This property
suffices to construct a left adjoint L: C — C’ sending C' to LC.

(3) “(b) = (a)”: By Lemmal|[L.5]it suffices to see that S C {S — equivalences}, which
is clear. (3)“(c) = (b)”: Consider the diagram

f

X —Y

|, ]

LX — LY

The vertical maps lie in S by the construction of L in (2). By the 2-out-of-3 property,
f liesin S. (3) “(a) = (¢)”: We consider the same diagram:

f

X —Y

|, ]

LX — LY

The vertical maps are in S and therefore they are S-equivalences by (b) = (a).
By the 2-out-of-3 property, Lf is also an S-equivalence. But then the natural
transformation between the corepresentable functors:

Lf*: mape (LY, ) — mape (LX, )

is an equivalence, and therefore Lf: LX — LY is an equivalence by the Yoneda
Lemma.
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(4): We outline a proof which is different from the proof in |2, Proposition 5.5.4.15(2)].
Let X be an S-local object. Then for any S-equivalence s, the map map(s, X) is an
equivalence. By (3), X is also S-local. This proves that C’ is the full subcategory of
S-local objects. It is thus the following pullback:

C/ N S:

|, b

C—— §a°

where S denotes the oo-category of spaces, v is the inclusion of the equivalences in
S, and ¢ is defined by

o(x)= ] (map(B,X) - map(4, X))
(A—=B)eS

which is well-defined because S is a set of morphisms. Note that the map & — &~
sending z to id, is an equivalence. To summarize, we have:

(i) C,SAl and S~ are presentable co-categories.

(ii) As S is a set of morphisms, can choose a cardinal k, such that the domain
and the codomain of every morphism in S is xk-compact in C. Then ¢ is
k-accessible.

(iii) v preserves colimits as these are computed pointwise in SA'

Then it follows that C’ is accessible |2, Proposition 5.4.6.6]. In particular, it is
an accessible localization of a presentable co-category and therefore it is again
presentable. O

Proposition 2.6. Let C be a presentable co-category, S a set of morphisms, and
L :C — S~IC the localization functor of Theorem . Let D be an oco-category.
Then L* : Fun®(S~1C,D) — Fun’(C,D) is fully faithful and its essential image
consists of those f : C — D sending S to equivalences in D. (Here Fun®(—,-)
denotes the oo-category of functors which preserve small colimits.)

PROOF. See 2, Proposition 5.5.4.20]. The functor is the restriction of the functor
L* : Fun(S~1C,D) — Fun(C, D), which is fully faithful, as S7IC is a localization.
Hence it is again fully faithful and we are left to show the part about the essential
image, i.e., im(L*) = {F € Fun®(C,D) | Vs € S, f(s) is an equivalence}.

“C”: This is clear, as the functor L carries S to equivalences in S™'C.

“27": Let F: C — D be a colimit-preserving functor which carries S to equiv-
alences in D. The unit of the adjunction «: id — ¢L induces a natural
transformation F' — F o (iL). We will be done if we show that this natural
transformation is an equivalence.

Let S’ == {¢ | F(¢) is an equivalence}. This is strongly saturated by Remark
2 and also contains S. Therefore S C S’. Since ax € S for every object X
in C, it follows that F'(ax) is an equivalence as required.

O
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3. FACTORIZATION SYSTEMS

Definition 3.1. Let f: A — B and g : X — Y be two morphisms in an co-category
C. We say that f is orthogonal to g (and write f L g) if for every diagram

|

The space of lifting solutions mapc Iy (B, X) is contractible.

— X

Jo

Y

B

Lemma 3.2. Let f: A— B and g : X — Y be two morphisms in an co-category
C. Then the following are equivalent:

1) fLg
(2) For every morphism f:a — 3 in C,y whose underlying morphism in C is
f, the induced map

7
mape,, (8,g) —* MaPc, (a,g)

is an equivalence.

PROOF. See [2, Remark 5.2.8.3]. Given a diagram

|

X

g

= |-

Y

we can restrict to the triangle f:

INX

B——Y

and then observe that mape, (B, X) is the homotopy fibre of the map in (2). O

Definition 3.3. Let C be an co-category and let Sy, S be collections of morphisms
in C. We say that (S1, Sgr) is a factorization system if the following are satisfied:
(1) Sr and Sg are closed under retracts.
(2) Sp, L Sg.
(3) For every h: X — Z in C, there is a factorization h : X Ly 4 7 with
f €Sy and g € Sg.

Exercise 3.4. Let (Sr,Sgr) be a factorization system in C. Show that Sy is
saturated. (Hint: Use Lemma [3.2])

Given a collection S of morphisms in C, we denote by S+ the collection of the
morphisms in C which are orthogonal to every morphism in S,

Sti={g: X >Y |Vs€S:sLg}
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Theorem 3.5. Let C be a presentable oco-category and S a saturated collection of
small generation in C. Then (S, S') is a factorization system in C.

Lemma 3.6. Under the assumptions of Theorem[3.5, we have that for every X € C,
the collection of morphisms in C; x

Sx = (C/X — C)_I(S)
is also a saturated collection of small generation.

PROOF. See |2, Lemma 5.5.5.10]. Sx is again saturated by Remark Consider
the pullback

D —

| |

D —— cA!

where D denotes the full subcategory of cA’ spanned by S. Then D’ is the full
subcategory of C/A); spanned by Sx. Applying Lemma we only need to show that
D’ is presentable. Using the properties of pullbacks with respect to cocompleteness
and accessibility (see [2, Proposition 5.5.3.12]), this is then a consequence of the
following observations:

(i) D is presentable by Lemma cA' and C/A); are presentable because C is
(see |2, Proposition 5.5.3.6] and [2, Proposition 5.5.3.10]).

(ii) D — cA! preserves small colimits, as S is saturated. C/A); —cA' preserves
small colimits. (]

PROOF. (of Theorem 3.5)) See [2, Proposition 5.5.5.7]. Both collections of morphisms
are closed under retracts, so (1) v'. Clearly S 1. St so (2) v'. For (3),let h: X — Z

be a morphism in C. Then finding a factorization X Ly % 7 with f €S and
g € St is the same as finding a morphism f: h — ¢ in C,z such that f €8z and
g € S*. Furthermore, using Lemma, we deduce that g € S+ if and only if g is
Sz-local. So we get the desired factorization by applying Lemma to (C/z,5z),
which we can do by Lemma so also (3)v'. O
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