PRESENTABLE ∞ -CATEGORIES – II

P. BÄRNREUTHER

1. Saturated Collections of Morphisms

Definition 1.1. Let \mathcal{C} be an ∞ -category and let S be a collection of morphisms in \mathcal{C} . We call S (strongly) saturated if

- (1) S is closed under small colimits in Fun(Δ^1, \mathcal{C}).
- (2) (saturated) S contains all equivalences and is closed under composition.
 (strongly saturated) S has the 2-out-of-3 property.
- (3) S is closed under pushouts in C.

Clearly the intersection of (strongly) saturated collections of morphisms is again (strongly) saturated. Therefore for every collection S of morphisms in C, there is a smallest (strongly) saturated collection $S \subseteq \overline{S}$, called the (strongly) saturated closure of S. If for a (strongly) saturated collection S there is a small set S_0 such that $\overline{S}_0 = S$, we say that S is of small generation.

Remark 1.2. If \mathcal{C} is cocomplete, then a strongly saturated collection S contains all equivalences, as these are pushouts of id_{\emptyset} in \mathcal{C} . In particular, S is saturated. Also, the collection of all equivalences in \mathcal{C} is (strongly) saturated.

Remark 1.3. Let \mathcal{C}, \mathcal{D} be cocomplete ∞ -categories and let $F : \mathcal{C} \to \mathcal{D}$ be a colimit-preserving functor. Then the preimage of a (strongly) saturated collection S in \mathcal{D} under the functor F is again (strongly) saturated.

Definition 1.4. Let \mathcal{C} be a cocomplete ∞ -category and S a collection of morphisms in \mathcal{C} . Then a morphism $f: x \to y$ in \mathcal{C} is called a S-equivalence if for every S-local object $z \in \mathcal{C}$, the induced map:

$$\operatorname{map}(y,z) \stackrel{\sim}{\to} \operatorname{map}(x,z)$$

is an equivalence.

Lemma 1.5. Let S be collection of morphisms in a cocomplete ∞ -category \mathcal{C} . Then the collection of S-equivalences is strongly saturated.

PROOF. See [2, Lemma 5.5.4.11]. The collection of S-equivalences is the intersection of the preimages of equivalences under the functors map($_$, z) for every S-local object $z \in \mathcal{C}$. Note that these functors send colimits in \mathcal{C} to limits.

2. Localizations of Presentable ∞-Categories

Theorem 2.1. Let \mathcal{C} be presentable ∞ -category, S a set of morphisms in \mathcal{C} , \overline{S} its strongly saturated closure, and let $\mathcal{C}' \subseteq \mathcal{C}$ denote the full subcategory of \overline{S} -local objects. Then:

- (1) For every $C \in \mathcal{C}$, there exists a morphism $s: C \to C'$ in \overline{S} where $C' \in \mathcal{C}'$.
- (2) The inclusion $i: \mathcal{C}' \subseteq \mathcal{C}$ has a left adjoint $L: \mathcal{C} \to \mathcal{C}'$.

- (3) For every morphism f in C the following are equivalent:
 - (a) f is an S-equivalence.
 - (b) $f \in \overline{S}$.
 - (c) Lf is an equivalence.
- (4) C' is presentable.

Lemma 2.2. Let \mathcal{C} be a presentable ∞ -category, S a saturated collection of morphisms in \mathcal{C} , and let $\mathcal{D} \subseteq Fun(\Delta^1, \mathcal{C})$ denote the full subcategory generated by S. The following are equivalent:

- (1) S is of small generation.
- (2) The full subcategory $\mathcal{D} \subseteq Fun(\Delta^1, \mathcal{C})$ is presentable.

PROOF. See [2, Lemma 5.5.5.9]. (2) \Rightarrow (1): \mathcal{D} is generated under small colimits by a (small) set of morphisms.

 $(1)\Rightarrow(2)$: The strategy of proof is different from the one in [2, Lemma 5.5.5.9] and is based on [1, Theorem 1(7)]. Let $S_0\subseteq\mathcal{C}$ be a small collection of morphisms whose saturated closure is S. Let κ be a regular cardinal such that \mathcal{C} is κ -accessible. Then the full subcategory of κ -compact objects \mathcal{C}^{κ} is essentially small, and we may assume without loss of generality that S_0 contains the morphism id_x for every $x\in\mathcal{C}^{\kappa}$. Using one of the characterizations of presentable ∞ -categories [1, Theorem 1], it suffices to show that S_0 detects equivalences. (Note that every object of $Fun(\Delta^1, \mathcal{C})$ is λ -compact for some λ and $\mathcal{D}\subseteq Fun(\Delta^1, \mathcal{C})$ is closed under colimits.)

Let $u: f_1 \to f_2$ be a morphism in \mathcal{D} such that for every $s \in S_0$, the morphism

$$map(s, u): map(s, f_1) \rightarrow map(s, f_2)$$

is an equivalence. Then it suffices to show that this is also true for every $s \in S$. Consider the collection of morphisms

$$T := \{ f \in S \mid \text{map}(f, u) \text{ is an equivalence} \}.$$

We know that $S_0 \subseteq T$, therefore it suffices to show:

Claim. T is saturated.

Before we prove this claim, we first recall some **general facts** and make some useful observations:

(i) We can describe the mapping spaces in \mathcal{C}^{Δ^1} as follows: given $f,g\in\mathcal{C}^{\Delta^1}$ we have a canonical equivalence

$$(*) \qquad \operatorname{map}_{\mathcal{C}^{\Delta^1}}(f,g) \simeq \operatorname{map}_{\mathcal{C}}(\operatorname{dom}(f),\operatorname{dom}(g)) \times \operatorname{map}_{\mathcal{C}}(\operatorname{cod}(f),\operatorname{cod}(g)) \\ \operatorname{map}_{\mathcal{C}}(\operatorname{dom}(f),\operatorname{cod}(g))$$

where the right space is a pullback in the ∞ -category of spaces. This is can be seen by using the definition of the mapping space as a pullback of the diagram

$$\max_{\mathcal{C}}(x,y) \xrightarrow{\mathcal{C}^{\Delta^{1}}} \downarrow (\text{dom}, \text{cod})$$

$$\downarrow \qquad \qquad \downarrow (\text{dom}, \text{cod})$$

$$\uparrow \qquad \qquad \downarrow (\text{dom}, \text{cod})$$

together with the following (homotopy) pullback diagram:

$$\operatorname{map}_{\mathcal{C}^{\Delta^{1}}}(h, \operatorname{id}_{x}) \longrightarrow \mathcal{C}^{\Delta^{2}}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Delta^{0} \xrightarrow{(h, x)} \mathcal{C}^{\Delta^{1}} \times \mathcal{C}.$$

Then we obtain an equivalence:

$$\operatorname{map}_{\mathcal{C}^{\Delta^1}}(f,g) \simeq \operatorname{map}_{\mathcal{C}^{\Delta^1}}(f,\operatorname{id}_{\operatorname{cod}(g)}) \times \operatorname{map}(\operatorname{id}_{\operatorname{dom}(f)},g) \\ \operatorname{map}_{\mathcal{C}}(\operatorname{dom}(f),\operatorname{cod}(g))$$

by looking at the fibres of the following equivalent morphisms:

$$(\mathcal{C}^{\Delta^1} \overset{\Delta^1}{\longrightarrow} \mathcal{C}^{\Delta^1} \times \mathcal{C}^{\Delta^1}) \simeq (\mathcal{C}^{\Delta^2} \times_{\mathcal{C}^{\Delta^1}} \mathcal{C}^{\Delta^2} \longrightarrow (\mathcal{C}^{\Delta^1} \times \mathcal{C}) \times_{\mathcal{C} \times \mathcal{C}} (\mathcal{C} \times \mathcal{C}^{\Delta^1})).$$

(ii) Let $f, g \in \mathcal{C}^{\Delta^1}$ and assume that f is an equivalence. Then composition with f induces an equivalence between mapping spaces:

$$\operatorname{map}_{\mathcal{C}}(\operatorname{cod}(f), \operatorname{cod}(g)) \stackrel{\cong}{\to} \operatorname{map}_{\mathcal{C}}(\operatorname{dom}(f), \operatorname{cod}(g)).$$

So the equivalence (*) implies that restricting to the domain induces an equivalence

(**)
$$\operatorname{map}_{\mathcal{C}^{\Delta^1}}(f,g) \simeq \operatorname{map}_{\mathcal{C}}(\operatorname{dom}(f),\operatorname{dom}(g)).$$

(iii) Applying (**) to the special case where $f = id_x$ for $x \in \mathcal{C}$, we get

$$\operatorname{map}_{\mathcal{C}^{\Delta^1}}(\operatorname{id}_x, g) \simeq \operatorname{map}_{\mathcal{C}}(x, \operatorname{dom}(g))$$

and this equivalence is natural in g. Thus, since $\mathrm{id}_x \in S_0$ for every $x \in \mathcal{C}^{\kappa}$, the morphism $u: f_1 \to f_2$ induces an equivalence

$$\operatorname{map}_{\mathcal{C}}(x, \operatorname{dom}(f_1)) \simeq \operatorname{map}_{\mathcal{C}}(x, \operatorname{dom}(f_2))$$

for every $x \in \mathcal{C}^{\kappa}$. As \mathcal{C}^{κ} detects equivalences in \mathcal{C} , it follows that u restricts to an equivalence between the domains:

$$(***) \qquad \operatorname{dom}(f_1) \simeq \operatorname{dom}(f_2)$$

Proof of the Claim. We can now prove that T is saturated:

(1) T is stable under small colimits in \mathcal{C}^{Δ^1} : Let $F: K \to \mathcal{C}^{\Delta^1}$ be a diagram such that $F(k) \in T$ for every $k \in K$. We have an equivalence

$$\operatorname{map}_{\mathcal{C}^{\Delta^1}}(\operatorname{colim}_{k \in K}(F(k)), u) \simeq \lim_{k \in K} (\operatorname{map}_{\mathcal{C}^{\Delta^1}}(F(k), u)).$$

Thus, $\operatorname{map}_{\mathcal{C}^{\Delta^1}}(\operatorname{colim}_{k \in K}(F(k)), u)$ is a limit of equivalences and hence again an equivalence, so $\operatorname{colim}_{k \in K}(F(k))$ lies again in T.

- (2) T contains the equivalences: For an equivalence f, the map $\operatorname{map}_{\mathcal{C}}(f, u)$ is by (**) equivalent to $\operatorname{map}_{\mathcal{C}}(\operatorname{dom}(f), \operatorname{dom}(u))$, which is an equivalence by (***).
- (3) T is stable under pushouts: Consider a pushout in \mathcal{C}

$$\begin{array}{ccc}
a & \xrightarrow{f} & b \\
\downarrow & & \downarrow \\
x & \xrightarrow{f'} & y
\end{array}$$

where f lies in T. For any $h \in \mathcal{C}^{\Delta^1}$, we have a natural pullback

$$\operatorname{map}_{\mathcal{C}}(y,\operatorname{cod}(h)) \simeq \operatorname{map}_{\mathcal{C}}(x,\operatorname{cod}(h)) \times_{\operatorname{map}_{\mathcal{C}}(a,\operatorname{cod}(h))} \operatorname{map}_{\mathcal{C}}(b,\operatorname{cod}(h)).$$

Combining this with the equivalence (*), we obtain natural equivalences:

$$\begin{split} \operatorname{map}(f',h) &\overset{(*)}{\simeq} \operatorname{map}_{\mathcal{C}}(x,\operatorname{dom}(h)) \times \operatorname{map}_{\mathcal{C}}(y,\operatorname{cod}(h)) \\ &\simeq \operatorname{map}_{\mathcal{C}}(x,\operatorname{dom}(h)) \times (\operatorname{map}_{\mathcal{C}}(x,\operatorname{cod}(h)) \times \operatorname{map}_{\mathcal{C}}(b,\operatorname{cod}(h))) \\ &\simeq \operatorname{map}_{\mathcal{C}}(x,\operatorname{dom}(h)) \times (\operatorname{map}_{\mathcal{C}}(x,\operatorname{cod}(h)) \times \operatorname{map}_{\mathcal{C}}(a,\operatorname{cod}(h))) \\ &\simeq \operatorname{map}_{\mathcal{C}}(x,\operatorname{dom}(h)) \times \operatorname{map}_{\mathcal{C}}(b,\operatorname{cod}(h)) \\ &\simeq \operatorname{map}_{\mathcal{C}}(x,\operatorname{dom}(h)) \times (\operatorname{map}_{\mathcal{C}}(a,\operatorname{dom}(h)) \times \operatorname{map}_{\mathcal{C}}(b,\operatorname{cod}(h))) \\ &\overset{(*)}{\simeq} \operatorname{map}_{\mathcal{C}}(x,\operatorname{dom}(h)) \times \operatorname{map}_{\mathcal{C}}(a,\operatorname{dom}(h)) \\ &\overset{(*)}{\simeq} \operatorname{map}_{\mathcal{C}}(x,\operatorname{dom}(h)) \times \operatorname{map}_{\mathcal{C}}(a,\operatorname{dom}(h)) \end{split}$$

It follows that map(f', u) is an equivalence because it can be identified with the equivalence (this uses (***)):

$$\max_{\mathcal{C}}(x, \operatorname{dom}(f_1)) \times \max_{\mathcal{C}^{\Delta^1}}(f, f_1) \simeq \max_{\mathcal{C}}(x, \operatorname{dom}(f_2)) \times \max_{\mathcal{C}^{\Delta^1}}(f, f_2).$$

$$\max_{\mathcal{C}}(a, \operatorname{dom}(f_1)) \times \max_{\mathcal{C}^{\Delta^1}}(f, f_2).$$

Lemma 2.3. Left fibrations preserve colimits indexed by weakly contractible simplicial sets.

PROOF. See [2, Proposition
$$4.4.2.9$$
].

Lemma 2.4. Let \mathcal{C} and S be as in Lemma 2.2 and let $X \in \mathcal{C}$ be an object. Then the full subcategory $\mathcal{D} \subseteq \mathcal{C}^{X/}$ spanned by the elements in S is closed under small colimits. (Here $\mathcal{C}^{X/} \simeq \mathcal{C}_{X/}$ denotes the alternative slice construction of [2, 4.2.1].)

PROOF. See [2, Lemma 5.5.5.11]. \mathcal{D} admits κ -small colimits if and only if \mathcal{D} admits finite colimits and κ -small filtered colimits by [2, Corollary 4.2.3.11]. It admits finite colimits if and only if it admits pushouts and has an initial object by [2, Corollary 4.4.2.4]. Hence it suffices to show that \mathcal{D} contains an initial object of $\mathcal{C}^{X/}$ and is closed under colimits indexed by a small weakly contractible simplicial set K (take $K = \Lambda_0^2$ or K filtered).

- (i) The initial objects in $\mathcal{C}^{X/}$ are the equivalences. These are contained in S by definition.
- (ii) Consider a diagram $\overline{p}: K^{\triangleright} \to \mathcal{C}^{X/}$, which is a colimit of $p := \overline{p}|_{K}$, and p is a diagram in \mathcal{D} . By the construction of the alternative slice $\mathcal{C}^{X/}$, this corresponds to a map

$$P: K^{\triangleright} \times \Delta^1 \to \mathcal{C}$$

such that $P|_{K^{\triangleright}\times\{0\}} = \operatorname{const}_X$ and $P|_{K^{\triangleright}\times\{1\}} = (\mathcal{C}^{X/} \to \mathcal{C}) \circ \overline{p}$. Both of these two restrictions are colimit diagrams: The first one because $K \subseteq K^{\triangleright}$ is left anodyne, and thus cofinal, and the second one by Lemma 2.3. It follows that P is a colimit diagram in $Fun(\Delta^1, \mathcal{C})$. Since S is closed under colimits, we conclude that \overline{p} is also a diagram in \mathcal{D} .

Lemma 2.5. Let \mathcal{C} and S be as in Lemma 2.2 and assume that S is of small generation. Then for every object $X \in \mathcal{C}$, there exists a morphism $t: X \to Y$ in S such that Y is S-local.

PROOF. See [2, Lemma 5.5.5.14]. Let $\mathcal{D} \subseteq Fun(\Delta^1, \mathcal{C})$ be the full subcategory spanned by S. Consider the pullback defined by

$$\mathcal{D}_{X} \longrightarrow \mathcal{D} \qquad \mathcal{D}_{X} \longrightarrow \mathcal{D}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
or equivalently by
$$\Delta^{0} \xrightarrow{X} Fun(\{0\}, \mathcal{C}) \qquad \qquad \mathcal{C}_{X/} \longrightarrow \mathcal{C}^{\Delta^{1}}$$

The ∞ -category $\mathcal{D}_X \subseteq \mathcal{C}_{X/}$ is cocomplete (similarly to the proof of Lemma 2.4).

Claim. The ∞ -category \mathcal{D}_X is accessible.

Proof of the Claim. The functor $\mathcal{D} \to Fun(\{0\}, \mathcal{C})$ is a categorical fibration. To see this, consider a lifting problem:

$$\begin{cases}
0 \\
\downarrow \\
\downarrow \\
0
\end{cases}
\xrightarrow{f} \\
\downarrow g \\
\downarrow g
\end{cases}
\in \mathcal{D}^{\Delta^{1}}$$

Then we get a diagram as in the right square by taking the pushout in \mathcal{C} . If g is an equivalence, then the resulting square defines an equivalence in \mathcal{C}^{Δ^1} . Note that Δ^0, \mathcal{C} and \mathcal{D} are accessible by assumption and Lemma 2.2. Moreover, the functor $\mathcal{D} \to \mathcal{C}$ is accessible, as S is closed under colimits in \mathcal{C}^{Δ^1} . The functor $X: \Delta^0 \to \mathcal{C}$ is also accessible, as κ -filtered colimits are weakly contractible (and using the same argument as in the proof of Lemma 2.4). Then we conclude that \mathcal{D}_X is accessible using the left pullback square above and [2, Proposition 5.4.6.6].

Therefore \mathcal{D}_X is presentable, and hence has a terminal object $X \xrightarrow{t} Y$. Then it remains to show that Y is S-local. Let $f: A \to B$ be a morphism in S. For any $g: A \to Y$, we form the pushout

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow g & & \downarrow g' \\
Y & \xrightarrow{f'} & Z
\end{array}$$

and obtain pullback squares:

$$\begin{array}{cccc} \operatorname{map}_{\mathcal{C}_{A/}}(f,g) & \longrightarrow & \Delta^{0} \\ & & & & \downarrow \operatorname{id}_{Y} \\ \operatorname{map}_{\mathcal{C}}(Z,Y) & \xrightarrow{f'^{*}} & \operatorname{map}_{\mathcal{C}}(Y,Y) \\ & & & \downarrow g'^{*} & & \downarrow g^{*} \\ \operatorname{map}_{\mathcal{C}}(B,Y) & \xrightarrow{f^{*}} & \operatorname{map}_{\mathcal{C}}(A,Y) \end{array} \tag{*}$$

Hence $\operatorname{map}_{\mathcal{C}_{A/}}(f,g) \simeq \operatorname{map}_{\mathcal{C}_{Y/}}(f',\operatorname{id}_Y)$. It suffices to show that this mapping space is contractible. Consider a 2-simplex σ in $\mathcal C$ witnessing that a morphism $t':X\to Z$ is the compostion of t and f'. Then we have a pullback:

$$\operatorname{map}_{\mathcal{C}_{Y/}}(f', \operatorname{id}_{Y}) \simeq \operatorname{map}_{\mathcal{C}_{t/}}(\sigma, \operatorname{id}_{t}) \longrightarrow \Delta^{0}$$

$$\downarrow \qquad \qquad \downarrow \operatorname{id}_{t}$$

$$\operatorname{map}_{\mathcal{C}_{X/}}(t', t) \xrightarrow{\sigma^{*}} \operatorname{map}_{\mathcal{C}_{X/}}(t, t).$$

The morphism t' is in S because it is a composition of an element in S with the pushout of an element in S. Therefore the lower mapping spaces are mapping spaces in \mathcal{D}_X , where t is terminal. Hence σ^* is an equivalence and thus $\operatorname{map}_{\mathcal{C}_{A/}}(f,g) \simeq \operatorname{map}_{\mathcal{C}_{Y/}}(f',\operatorname{id}_Y)$ is contractible. So, the lowest horizontal map in diagram (*) is an equivalence as required.

PROOF. (of Theorem 2.1) See [2, Proposition 5.5.4.15]. (1) follows from Lemma 2.5. (2): For $C \in \mathcal{C}$, we set $LC := C' \in \mathcal{C}'$ and $t_C : C \to iLC$ in \overline{S} (Lemma 2.5). Then for every $D \in \mathcal{D}$:

$$\operatorname{map}_{\mathcal{C}'}(LC,D) \simeq \operatorname{map}_{\mathcal{C}}(iLC,iD) \simeq \operatorname{map}_{\mathcal{C}}(C,iD)$$

where the last equivalence comes from the fact that D is \overline{S} -local. This property suffices to construct a left adjoint $L \colon \mathcal{C} \to \mathcal{C}'$ sending C to LC.

(3) " $(b) \Rightarrow (a)$ ": By Lemma 1.5 it suffices to see that $S \subseteq \{S - equivalences\}$, which is clear. (3) " $(c) \Rightarrow (b)$ ": Consider the diagram

$$X \xrightarrow{f} Y$$

$$\downarrow \qquad \qquad \downarrow$$

$$LX \xrightarrow{Lf} LY$$

The vertical maps lie in \overline{S} by the construction of L in (2). By the 2-out-of-3 property, f lies in \overline{S} . (3) " $(a) \Rightarrow (c)$ ": We consider the same diagram:

$$\begin{array}{c} X \xrightarrow{f} Y \\ \downarrow & \downarrow \\ LX \xrightarrow{Lf} LY \end{array}$$

The vertical maps are in \overline{S} and therefore they are S-equivalences by $(b) \Rightarrow (a)$. By the 2-out-of-3 property, Lf is also an S-equivalence. But then the natural transformation between the corepresentable functors:

$$Lf^*: \operatorname{map}_{\mathcal{C}'}(LY, \underline{\hspace{0.1cm}}) \to \operatorname{map}_{\mathcal{C}'}(LX, \underline{\hspace{0.1cm}})$$

is an equivalence, and therefore $Lf\colon LX\to LY$ is an equivalence by the Yoneda Lemma.

(4): We outline a proof which is different from the proof in [2, Proposition 5.5.4.15(2)]. Let X be an S-local object. Then for any S-equivalence s, the map $\max(s, X)$ is an equivalence. By (3), X is also \overline{S} -local. This proves that C' is the full subcategory of S-local objects. It is thus the following pullback:

$$\begin{array}{ccc}
\mathcal{C}' & \longrightarrow \mathcal{S}^{\simeq} \\
\downarrow & & \downarrow \psi \\
\mathcal{C} & \longrightarrow \mathcal{S}^{\Delta^{1}}
\end{array}$$

where S denotes the ∞ -category of spaces, ψ is the inclusion of the equivalences in S, and ϕ is defined by

$$\phi(X) = \coprod_{(A \to B) \in S} (\operatorname{map}(B, X) \to \operatorname{map}(A, X))$$

which is well-defined because S is a set of morphisms. Note that the map $S \to S^{\simeq}$ sending x to id_x is an equivalence. To summarize, we have:

- (i) $\mathcal{C}, \mathcal{S}^{\Delta^1}$ and \mathcal{S}^{\simeq} are presentable ∞ -categories.
- (ii) As S is a set of morphisms, can choose a cardinal κ , such that the domain and the codomain of every morphism in S is κ -compact in \mathcal{C} . Then ϕ is κ -accessible.
- (iii) ψ preserves colimits as these are computed pointwise in \mathcal{S}^{Δ^1} .

Then it follows that \mathcal{C}' is accessible [2, Proposition 5.4.6.6]. In particular, it is an accessible localization of a presentable ∞ -category and therefore it is again presentable.

Proposition 2.6. Let \mathcal{C} be a presentable ∞ -category, S a set of morphisms, and $L: \mathcal{C} \to S^{-1}\mathcal{C}$ the localization functor of Theorem 2.1. Let \mathcal{D} be an ∞ -category. Then $L^*: Fun^L(S^{-1}\mathcal{C}, \mathcal{D}) \to Fun^L(\mathcal{C}, \mathcal{D})$ is fully faithful and its essential image consists of those $f: \mathcal{C} \to \mathcal{D}$ sending S to equivalences in \mathcal{D} . (Here $Fun^L(-,-)$ denotes the ∞ -category of functors which preserve small colimits.)

PROOF. See [2, Proposition 5.5.4.20]. The functor is the restriction of the functor $L^*: Fun(S^{-1}\mathcal{C}, \mathcal{D}) \to Fun(\mathcal{C}, \mathcal{D})$, which is fully faithful, as $S^{-1}\mathcal{C}$ is a localization. Hence it is again fully faithful and we are left to show the part about the essential image, i.e., $\operatorname{im}(L^*) = \{F \in Fun^L(\mathcal{C}, \mathcal{D}) \mid \forall s \in S, f(s) \text{ is an equivalence}\}.$

- " \subseteq ": This is clear, as the functor L carries S to equivalences in $S^{-1}\mathcal{C}$.
- "\[\]": Let $F: \mathcal{C} \to \mathcal{D}$ be a colimit-preserving functor which carries S to equivalences in \mathcal{D} . The unit of the adjunction $\alpha\colon \mathrm{id} \to iL$ induces a natural transformation $F \to F \circ (iL)$. We will be done if we show that this natural transformation is an equivalence.

Let $S' := \{ \phi \mid F(\phi) \text{ is an equivalence} \}$. This is strongly saturated by Remark 2 and also contains S. Therefore $\overline{S} \subseteq S'$. Since $\alpha_X \in \overline{S}$ for every object X in C, it follows that $F(\alpha_X)$ is an equivalence as required.

8

3. Factorization Systems

Definition 3.1. Let $f: A \to B$ and $g: X \to Y$ be two morphisms in an ∞ -category \mathcal{C} . We say that f is *orthogonal* to g (and write $f \perp g$) if for every diagram

$$\begin{array}{ccc}
A & \longrightarrow X \\
\downarrow f & \downarrow g \\
B & \longrightarrow Y
\end{array}$$

The space of lifting solutions $\operatorname{map}_{\mathcal{C}_{A//Y}}(B,X)$ is contractible.

Lemma 3.2. Let $f: A \to B$ and $g: X \to Y$ be two morphisms in an ∞ -category \mathcal{C} . Then the following are equivalent:

- (1) $f \perp g$.
- (2) For every morphism $\overline{f}: \alpha \to \beta$ in $\mathcal{C}_{/Y}$ whose underlying morphism in \mathcal{C} is f, the induced map

$$\mathrm{map}_{\mathcal{C}_{/Y}(\beta,g)} \xrightarrow{\overline{f}^*} \mathrm{map}_{\mathcal{C}_{/Y}(\alpha,g)}$$

is an equivalence.

PROOF. See [2, Remark 5.2.8.3]. Given a diagram

$$\begin{array}{ccc}
A & \xrightarrow{j} & X \\
\downarrow f & \downarrow g \\
B & \xrightarrow{\beta} & Y
\end{array}$$

we can restrict to the triangle \overline{f} :

and then observe that $\operatorname{map}_{\mathcal{C}_{A//Y}}(B,X)$ is the homotopy fibre of the map in (2). \square

Definition 3.3. Let \mathcal{C} be an ∞ -category and let S_L, S_R be collections of morphisms in \mathcal{C} . We say that (S_L, S_R) is a *factorization system* if the following are satisfied:

- (1) S_L and S_R are closed under retracts.
- (2) $S_L \perp S_R$.
- (3) For every $h: X \to Z$ in \mathcal{C} , there is a factorization $h: X \xrightarrow{f} Y \xrightarrow{g} Z$ with $f \in S_L$ and $g \in S_R$.

Exercise 3.4. Let (S_L, S_R) be a factorization system in \mathcal{C} . Show that S_L is saturated. (Hint: Use Lemma 3.2.)

Given a collection S of morphisms in C, we denote by S^{\perp} the collection of the morphisms in C which are orthogonal to every morphism in S,

$$S^{\perp} := \{g \colon X \to Y \mid \forall s \in S : s \perp g\}.$$

Theorem 3.5. Let \mathcal{C} be a presentable ∞ -category and S a saturated collection of small generation in \mathcal{C} . Then (S, S^{\perp}) is a factorization system in \mathcal{C} .

Lemma 3.6. Under the assumptions of Theorem 3.5, we have that for every $X \in \mathcal{C}$, the collection of morphisms in $\mathcal{C}_{/X}$

$$S_X := (\mathcal{C}_{/X} \to \mathcal{C})^{-1}(S)$$

is also a saturated collection of small generation.

PROOF. See [2, Lemma 5.5.5.10]. S_X is again saturated by Remark 1.3. Consider the pullback

$$\mathcal{D}' \longrightarrow \mathcal{C}_{/X}^{\Delta^1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{D} \longrightarrow \mathcal{C}^{\Delta^1}$$

where \mathcal{D} denotes the full subcategory of \mathcal{C}^{Δ^1} spanned by S. Then \mathcal{D}' is the full subcategory of $\mathcal{C}_{/X}^{\Delta^1}$ spanned by S_X . Applying Lemma 2.2, we only need to show that \mathcal{D}' is presentable. Using the properties of pullbacks with respect to cocompleteness and accessibility (see [2, Proposition 5.5.3.12]), this is then a consequence of the following observations:

- (i) \mathcal{D} is presentable by Lemma 2.2. \mathcal{C}^{Δ^1} and $\mathcal{C}^{\Delta^1}_{/X}$ are presentable because \mathcal{C} is (see [2, Proposition 5.5.3.6] and [2, Proposition 5.5.3.10]). (ii) $\mathcal{D} \to \mathcal{C}^{\Delta^1}$ preserves small colimits, as S is saturated. $\mathcal{C}^{\Delta^1}_{/X} \to \mathcal{C}^{\Delta^1}$ preserves
- small colimits.

PROOF. (of Theorem 3.5) See [2, Proposition 5.5.5.7]. Both collections of morphisms are closed under retracts, so (1) \checkmark . Clearly $S \perp S^{\perp}$, so (2) \checkmark . For (3), let $h: X \to Z$ be a morphism in \mathcal{C} . Then finding a factorization $X \xrightarrow{f} Y \xrightarrow{g} Z$ with $f \in S$ and $g \in S^{\perp}$ is the same as finding a morphism $\overline{f}: h \to g$ in $\mathcal{C}_{/Z}$ such that $\overline{f} \in S_{\mathcal{Z}}$ and $g \in S^{\perp}$. Furthermore, using Lemma 3.2, we deduce that $g \in S^{\perp}$ if and only if g is S_Z -local. So we get the desired factorization by applying Lemma 2.5 to $(\mathcal{C}_{/Z}, S_Z)$, which we can do by Lemma 3.6, so also $(3)\checkmark$.

References

- [1] P. Bärnreuther, Presentable ∞-categories I, Seminar Notes "Topics in Higher Category Theory" (2019/20).
 - Available online: https://graptismath.net/higher-categories-WS19.html
- [2] J. Lurie, Higher topos theory. Annals of Mathematics Studies, Vol. 170. Princeton University Press, Princeton, NJ, 2009.
 - Online revised version: www.math.harvard.edu/~lurie/papers/highertopoi.pdf