
SPECTRUM OBJECTS AND STABILIZATION

SEBASTIAN WOLF

1. Stabilization

The goal of the following is to associate a stable ∞-category to any ∞-category with
finite limits in a universal way. For this we will follow [2, section 1.4.2].

Definition 1.1. Let F : C → D be a functor between two∞-categories whereD has finite
limits. Then we define:

i) If C has pushouts, then F is called excisive if it takes pushout squares in C to
pullback squares inD.

ii) If C has a final object, then F is called reduced if F takes final objects to final
objects.

We will write Fun∗(C,D) (resp. Exc(C,D)) for the full subcategory of Fun(C,D) spanned
by the reduced (resp. excisive) functors. We will also write Exc∗(C,D) for the intersection
Fun∗(C,D) ∩ Exc(C,D).

Remark 1.2. Let C be an ∞-category with finite colimits and a final object and D an ∞-
category with finite limits. Then since limits commute with limits and limits in functor∞-
categories are computed objectwise, it follows that the∞-categories Fun∗(C,D), Exc(C,D)
and Exc∗(C,D) all again have finite limits.

Definition 1.3. i) Let C be an∞-category with a final object. Then we will write C∗
for the full subcategory of Fun(∆1,C) spanned by those arrows f : x→ y in C for
which x is a final object of C. Note that this is equivalent to the slice category C1/
for a final object 1.

ii) Let S denote the ∞-category of spaces. Define Sfin to be the smallest full subcat-
egory of S that is closed under finite colimits and contains the point. We call Sfin

the∞-category of finite spaces.
iii) For any n ∈ N we will define the n-sphere to be S n B Σn(S 0) ∈ Sfin. Here Σ

denotes the suspension functor and S 0 = ∗
∐
∗.

iv) For C an∞-category with finite limits, we define the category of spectrum objects
Sp(C) B Exc∗(Sfin

∗ ,C) and call an object X ∈ Sp(C) a spectrum object of C.

Remark 1.4. i) The category Sfin has the following universal property. For any ∞-
category D with finite colimits, evaluation at the point induces an equivalence of
∞-categories Funrex(Sfin,D) ' D. This follows from [1, Rem. 5.3.5.9] and [1,
Prop. 4.3.2.15].

ii) For K ∈ sSet, we obtain an isomorphism of∞-categories Sp(Fun(K,C)) � Fun(K,Sp(C))
induced by the canonical isomorphism Fun(Sfin,Fun(K,C)) � Fun(K,Fun(Sfin,C)).

iii) Similiarly one can show that for a pointed ∞-category C with finite colimits and
D an ∞-category with finite limits one has Exc∗(C,D∗) � Exc∗(C,D)∗. Thus the
following lemma shows that we get a canonical equivalence

Exc∗(C,D∗)→ Exc∗(C,D)

1
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given by composing with the canonical projectionD∗ → D

Lemma 1.5. Let C be a pointed ∞-category with finite colimits, and D an ∞-category
with finite limits. Then Exc∗(C,D) is pointed and has finite limits.

Proof: The following is taken from [2, Lemma 1.4.2.10]. We know that Exc∗(C,D) has
finite limits by remark 1.2. So it remains to show that Exc∗(C,D) is pointed. Let ∗ be a
zero object of C and ∗′ a final object of D. Denote by X : C → D the constant functor at
∗′. Again since limits in functor categories are computed objectwise, X is a final object of
Exc∗(C,D). Now one observes that the functor X is the left Kan extension of ∗′ : {∗} → D
along the inclusion {∗} ⊆ C. Thus for any reduced excisive functor F ∈ Exc∗(C,D) we get
an equivalence of mapping spaces

mapFun(C,D)(X,F ) ' mapD(X(∗),F (∗)) ' ∗

since F (∗) ' ∗′. So X is a zero object of Exc∗(C,D) �

Our next goal is to show that the ∞-category Exc∗(C,D) is in fact stable. For this we
will have to introduce some terminology first.

Notation 1.6. Let F : C → D be a functor. Then for any commutative square τ

W X

Y Z

we obtain a canonical map ητ : F(W) → F(Y) ×F(z) F(X). If C is pointed and has finite
colimits and F is reduced, we get a map F(X)→ F(∗) ×F(ΣX) F(∗) ' ∗ ×F(ΣX) ∗ induced by
the suspension square

X ∗

∗ ΣX

and we will denote this map by just ηX .

We now need the following technical lemma:

Lemma 1.7. Let C be a pointed ∞-category with finite colimits, D an ∞-category with
finite limits and F : C → D a reduced functor. Suppose that we are given a pushout square
τ

W X

Y Z

in C. Then there exists a map θ : F(Y) ×F(Z) F(X)→ ∗ ×F(ΣW) ∗ such that:

i) θ ◦ ητ ' ηW

ii) Let Σ(τ) denote the square

ΣW ΣX

ΣY ΣZ.
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Then we get a pullback square

ηΣ(τ) ◦ θ ηX

ηY ηZ

in Fun(∆1,D).

Proof: Again we follow the proof given in [2, Lemma 1.4.2.15]. We have the following
diagram in C

W X 0

Y Z Y
∐

W 0 0

0 0
∐

W X ΣW ΣY

0 ΣX ΣZ
in which every square is a pushout square. Applying F and replacing the upper left corner
by a pullback we obtain the following diagram:

F(Y) ×F(Z) F(X) F(X) ∗

F(Y) F(Z) F(Y
∐

W 0) ∗

∗ F(0
∐

W X) F(ΣW) F(ΣY)

∗ F(ΣX) F(ΣZ)

So we get an induced map θ : F(Y) ×F(Z) F(X) → ∗ ×F(ΣW) ∗ by the universal property of
the pullback and it is easy to see that this map satisfies i) and ii) above. �

We are now able to prove the following theorem which will be the main ingredient in
order to show that Exc∗(C,D) is stable:

Theorem 1.8. Let C be a pointed ∞-category with finite colimits and D an ∞- category
with finite limits. Let F : C → D be a reduced functor. Then the following are equivalent:

i) F is excisive.
ii) ηX is an equivalence for X ∈ C.

Proof: (See [2, Prop. 1.4.2.13].) It is obvious that i) implies ii). For the converse let τ:

W X

Y Z

be a pushout square in C. It suffices to see that the map ητ is an equivalence. By Lemma
1.7 there is a map θ : F(X) ×F(Z) F(Y) → ∗ ×F(ΣW) ∗ such that θ ◦ ητ ' ηW (∗). Since by
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assumption ηW is an equivalence, it suffices to see that θ is invertible. By (∗) we know that
θ has a right inverse. Also by Lemma 1.7 we have a pullback square

ηΣ(τ) ◦ θ ηX

ηY ηZ

in which ηX , ηY and ηZ are equivalences, so ηΣ(τ) ◦ θ is an equivalence as well and so θ has
a right inverse and is thus invertible. �

Remark 1.9. Note that theorem 1.9 is slightly stronger than the version in [2], since we
dropped the assumption thatD is pointed. However we have seen above that this assump-
tion is not neeeded in the proofs. Alternatively one could also deduce theorem 1.8 from
the version in [2] by using the equivalence

Exc∗(C,D∗)→ Exc∗(C,D)

from the 1.4 iii) and the fact that the projection D∗ → D creates finite limits by [1, Prop.
1.2.13.8]. Using this slightly more general version we can already deduce the following
theorem ([2, Cor. 1.4.2.27]):

Theorem 1.10. Let C be a pointed∞- category. Then the following are equivalent:
i) C is stable.

ii) C has finite limits and Ω : C → C is an equivalence.
iii) C has finite colimits and Σ : C → C is an equivalence.

Proof: It is clear that ii) is equivalent to iii) by dualizing. It is also clear that i) implies ii).
We will now show that ii) implies i). Consider for every object x ∈ C, the reduced functor
mapC(−, x) : Cop → S. Let Σ denote an inverse of Ω. Note that by being an inverse of the
loop functor Ω, the functor Σ automatically acts as a suspension functor, i.e. one has

mapC(Σa, b) ' mapC(a,Ωb) ' Ω mapC(a, b)

for any a and b in C. Note that the∞-category Cop is pointed and has all finite colimits and
S has all finite limits. For every c ∈ C we have that c ' ΣΩc and thus the induced map

mapC(c, x) ' mapC(ΣΩc, x) ' Ω mapC(Ωc, x)

is an equivalence. Thus by theorem 1.8 the functor mapC(−, x) takes pushout squares in
Cop to pullback squares in S for any x ∈ C. In other words, pullback squares in C are
pushout squares. To complete the proof it suffices to show that C has cofibres. For any
morphism f : x→ y in C one has a diagram

fib( f ) ∗

x y

∗ Σfib( f )

f

where the top square and the outer square are both pushouts by what we have seen above.
So the lower square is also a pushout and hence C has cofibres. �

Theorem 1.11. Let C be an ∞-category with finite colimits and D an ∞-category with
finite limits. Then Exc∗(C,D) is stable.
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Proof: We have already seen that Exc∗(C,D) is pointed and has finite limits, so by theorem
1.10 it suffices to see that the functor Ω B ΩExc∗(C,D) is an equivalence of ∞-categories.
But one can easily check that the functor Σ∗

C
: Fun(C,D) → Fun(C,D), given by precom-

position with ΣC, restricts to Exc∗(C,D) and is an inverse to Ω. �

Remark 1.12. Note that here the proof of theorem 1.11 is a bit simpler than the one given
in [2], because we already have 1.10 at hand and thus do not have worry about the existence
of finite colimits in Exc∗(C,D).

Corollary 1.13. Let C be an∞-category with finite limits, then Sp(C) is stable.

We will now work towards formulating and proving a universal property for Sp(C):

Proposition 1.14. Let C be an ∞-category with finite colimits and a final object and D
a stable ∞-category. Let f : C → C∗ be a left adjoint to the forgetful functor C∗ → C.
Denote by Exc′(C,D) the full subcategory of Exc(C,D) spanned by those functors which
send the initial object of C to a terminal object ofD. Then composition with f induces an
equivalence of∞-categories f ∗ : Exc∗(C∗,D)→ Exc′(C,D).

Proof: Again we follow the proof in [2, Lemma 1.4.2.19]. Consider the composite

θ : Fun(C,D) × C∗ ⊆ Fun(C,D) × Fun(∆1,C)
comp
−−−−→ Fun(∆1,D)

cofib
−−−→ D.

One can then check that the transposed functor

Fun(C,D)→ Fun(C∗,D)

restricts to a functor Exc′(C,D)→ Exc∗(C∗,D) which is an inverse of f ∗. �

Notation 1.15. For C an∞-category with finite limits, denote the evaluation functor evS 0 :
Sp(C) → C by Ω∞. More generally, for any n ∈ N denote by Ω∞−n the composition
Ω∞ ◦ Σn

C
.

Proposition 1.16. LetD be an∞-category with finite limits. Then the following are equiv-
alent

i) D is stable.
ii) Ω∞ : Sp(C)→ C is an equivalence.

Proof: (See [2, Prop. 1.4.2.21].) We have already seen that ii) implies i). So let us assume
thatD is stable. Then we obtain a homotopy commutative diagram

Sp(D) D

Exc′(Sfin,D) Funrex(Sfin,D)

Ω∞

'

'

ev∗

where the left vertical arrow is the equivalence of proposition 1.14 and the bottom arrow is
an equivalence since D is stable. Now by remark 1.4 i), ev∗ is an equivalence as well and
thus we get our claim. �

We are now ready to prove that the category of spectrum objects has the following
universal property:

Proposition 1.17. Let C be a pointed∞-category with finite colimits andD an∞-category
with finite limits. Then we get an equivalence of∞-categories

Ω∞∗ : Exc∗(C,Sp(D))→ Exc∗(C,D)

given by composing with Ω∞.
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Proof: (See [2, Prop. 1.4.2.22].) We get a homotopy commutative square

Exc∗(C,Sp(D))

Sp(Exc∗(C,D)) Exc∗(C,D)

�
Ω∞∗

Ω∞Exc∗ (C,D)

where the bottom square is an equivalence by proposition 1.16 since Exc∗(C,D) is stable by
theorem 1.11, and the left vertical arrow is the canonical isomorphism given by restricting

Fun(C,Fun(Sfin
∗ ,D)) � Fun(Sfin

∗ ,Fun(C,D))

so we get our claim. �

We will now produce an alternative description of the category of spectrum objects:

Theorem 1.18. Let C be a pointed ∞-category with finite limits. Then the functor Ω∞ :
Sp(C)→ C induces an equivalence of Sp(C) with the limit of the tower of∞-categories

...→ C
ΩC
−−→ C

ΩC
−−→ C

Proof: Let S̃p(C) denote the limit of the tower above. Then by construction S̃p(C) is
pointed and has finite limits and the loop functor Ω∞

S̃p(C)
is an equivalence on S̃p(C), so

by theorem 1.10 it is stable. Hence it suffices to see that for any stable ∞-category D
the canonical functor φ : Sp(C) → S̃p(C) induced by Ω∞−n for all n ∈ N, induces an
equivalence of∞-categories:

Funlex(D,Sp(C))
φ∗
−→ Funlex(D, S̃p(C)).

Again we obtain a homotopy commutative square

Funlex(D,Sp(C)) Funlex(D, S̃p(C))

Funlex(D,C).

φ∗

Ω∞∗ pr0,∗

where pr0 : S̃p(C) → C denotes the canonical projection from the inverse limit. Now Ω∞∗
is an equivalence by theorem 1.17 as D is stable, and thus it suffices to see that pr0,∗ is an
equivalence. But we have that

Funlex(D, S̃p(C)) ' lim(...→ Funlex(D,C)
Ω∗
−−→ Funlex(D,C)

Ω∗
−−→ Funlex(D,C))

and so it suffices to see that Ω∗ is an equivalence (here Ω∗ denotes the functor given by
composition with Ω). But one can easily check that the functor given by precomposition
with ΣC is an inverse for Ω∗, which proves our claim. �

Remark 1.19. Again, the proof here is easier than the one given in [2], because we can
use theorem 1.10 and do not have to worry about the existence of finite colimits in S̃p(C).

Example 1.20. We define the ∞-category of Spectra to be Sp B Sp(S) and call an ob-
ject X ∈ Sp(S) a spectrum. Combining remark 1.4 iii) and theorem 1.18 one sees that a
spectrum can be identified with a sequence of pointed spaces (Xn)n∈N together with iden-
tifications ΩXn+1 ' Xn. In the classical literature these objects are usually referred to as
Ω-spectra. In particular it follows that the homotopy category h(Sp) is equivalent to the
classical stable homotopy category.
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2. Presentable Stable∞-categories

In this section we will study ∞-categories which are both presentable and stable at the
same time. We will follow [2, Sect. 1.4.4].

Proposition 2.1. Let C andD be presentable∞-categories and letD be stable. Then
i) Sp(C) is presentable.

ii) The functor Ω∞ : Sp(C)→ C admits a left adjoint Σ∞+ : C → Sp(C).
iii) An exact functor G : D → Sp(C) admits a left adjoint if and only if Ω∞ ◦G : D →
C admits a left adjoint.

Proof. We follow the proof of [2, Prop. 1.4.4.4]. Let us start with ii). Observe that the
composite

Sp(C)
'
−→ Sp(C∗)

Ω∞∗
−−→ C∗

pr
−→ C

can be identified with Ω∞. By the adjoint functor theorem it suffices to check that Ω∞

preserves all limits and is accessible. As the projection pr : C∗ → C creates limits and
weakly contractible colimits by [1, Prop.1.2.13.8] and [1, Prop. 4.4.2.9] it suffices to see
that Ω∞∗ admits a left adjoint. But since Ω∗ : C∗ → C∗ admits a left ajoint and C∗ is
also presentable by [1, Prop. 5.5.3.11], Ω∗ can be considered as a morphism in PrR.
Here PrR denotes the ∞-category of presentable ∞-categories and right adjoint functors.
Furthermore the inclusion PrR → Cat∞ preserves limits ([1, Thm. 5.5.3.18]). It follows
that the projection

lim(...→ C∗
Ω∗
−−→ C∗)→ C∗

admits a left adjoint as well, but by theorem 1.18, this functor can be identified with Ω∞∗ ,
which proves ii). In particular the above limit description shows that Sp(C) is presentable,
so we get i).
For iii), it immediately follows from ii) that the existence of a left adjoint of G implies the
existence of a left adjoint of Ω∞ ◦ G. So let us assume that Ω∞ ◦ G admits a left adjoint.
Again Ω∞ ◦G is given by the composition

D
G
−→ Sp(C)

'
−→ Sp(C∗)

Ω∞∗
−−→ C∗

pr
−→ C

and let us denote the compositionD → Sp(C∗) by G′. The same arguments as above show
that Ω∞∗ ◦G′ admits a left adjoint as well. Now it again follows from the limit description
in theorem 1.18 and [1, Thm. 5.5.3.18] that G′ and thus G admits a left adjoint as well. �

Corollary 2.2. Let C andD be presentable∞-categories and assume thatD is stable. We
denote by LFun(C,D) the full subcategory of Fun(C,D) spanned by those functors that are
left adjoints. Then precomopisition with Σ∞+ induces an equivalence of∞-categories

Σ
∞,∗
+ : LFun(Sp(C),D)→ LFun(C,D).

Proof: The statement is dual to Ω∞ inducing an equivalence of∞-categories

Ω∞∗ : RFun(D,Sp(C))→ RFun(D,C)

but this follows by combining proposition 1.17 and 2.1. �

Definition 2.3. We will call S B Σ∞+ (∗) ∈ Sp(S) the sphere spectrum.

The following proposition shows that the category of spectra can be viewed as the ana-
logue of the category of spaces in the stable world:
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Corollary 2.4. Let D be a presentable stable ∞-category. Then evaluation at S induces
an equivalence of∞-categories

evS : LFun(Sp,D)→ D

Proof: We have a homotopy commutative diagram

LFun(Sp,D) LFun(S,D)

D

Σ
∞,∗
+

evS

ev∗

and ev∗ and Σ
∞,∗
+ are both equivalences. �

We will now try to provide characterizations of stable and presentable ∞-categories.
For this we will need the following two lemmas

Lemma 2.5. Let C be a stable∞-category and C′ ⊆ C a localization of C. Let L : C → C′

be a left adjoint to the inclusion. Then L is left exact if and only if C′ is stable.

Proof: (See [2, Lemma 1.4.4.7]). It is obvious that if C′ is stable, then L is left exact. So
let us assume that L is left exact. Since C′ is closed under limits in C it suffices to see that
C′ is closed under pushouts by [2, Lemma 1.1.3.3]. So let τ:

X Y

z W

be a pushout square in C, where X,Y and Z are in C′. Since C is stable τ is a pullback
square and thus L(τ) is a pullback square in C as well since L is left exact. Again since
C is stable L(τ) is also a pushout square in C. But since X,Y and Z are objects of C′ the
unit map τ → L(τ) induces an equivalence T

ηT
−−→ LT for T ∈ {X,Y,Z}. Thus the unit map

ηW : W → LW is an equivalence as well, as both τ and L(τ) are pushout squares. It follows
that W is in the essential image of the inclusion C′ ⊆ C, which proves our claim. �

Lemma 2.6. Let C be an ∞-category with finite limits, D a stable ∞-category and G :
D → Sp(C) an exact functor. Then if g B Ω∞ ◦G : D → C is fully faithful, G is itself fully
faithful.

Proof: (See [2, Lemma 1.4.4.8]). Invoking remark 1.4 iii) and theorem 1.18, it suffices to
prove that the map

gn : D
G
−→ Sp(C)

Ω∞−n
∗

−−−−→ C∗

is fully faithful for all n. Furthermore, since G is exact, we have that gn ' gn+1 ◦ΩD, where
ΩD : D → D is the loop functor. Since D is stable, ΩD is an equivalence, so it suffices
to check that g0 is fully faithful. So let us pick X,Y ∈ D. We have a homotopy pullback
square

mapC∗ (g0(X), g0(Y)) mapC(g(X), g(Y))

∗ mapC(∗C, g(Y))

ϕ

where ∗C denotes as final object of C. Since by assumption g is fully faithful, it suffices to
see that ϕ is an equivalence. Furthermore the square above is a pullback and so it suffices
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to see that the bottom right corner is contractible. But as g is fully faithful and exact we
have that

mapC(∗C, g(Y)) ' mapD(∗D,Y)

where ∗D denotes a final object of D. The claim now follows since D is stable, because
then ∗D is also an initial object. �

We can now give the following characterization of stable presentable ∞-categories.
Note that again the category of spectra plays the role that the category of spaces plays
in the unstable case.

Theorem 2.7. Let C be an∞-category. Then the following are equivalent:
i) C is presentable and stable.

ii) There exists a presentable and stable ∞-category D and an accessible left exact
localization functor L : D → C.

iii) There exists a small∞-category E and an accessible left exact localization functor
L : Fun(Eop,Sp)→ C.

Proof: Again we follow the proof in [2, Prop. 1.4.4.9]. Note that since limits and colimits
in functor categories are computed objectwise, it is clear that Fun(Eop,Sp) is again stable.
It is presentable as well since Sp is presentable by proposition 2.1. Thus iii) implies ii).
It is clear that ii) implies i) by lemma 2.5. We will now show that i) implies iii). Since C
is presentable there exists a small ∞-category E and an accesible fully faithful embedding
i : C → P(E) which admits a left adjoint. By the dual of corollary 2.2 there exists a
factorization

i : C
G
−→ Sp(P(E))

Ω∞

−−→ P(E)

where G admits a left adjoint. By lemma 2.6, G is fully faithful and thus C is an accessible
left exact localization of Sp(P(E)) � Fun(Eop,Sp). �
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