STABLE ∞ -CATEGORIES

P. BONART

1. Stable ∞ -categories

Definition: Let \mathscr{C} be an ∞ -category. An object c of \mathscr{C} is called a *zero object* if it is both initial and terminal. The ∞ -category \mathscr{C} is called *pointed* if it has a zero object.

Definition: Let \mathscr{C} be a pointed ∞ -category with zero object 0. A *triangle* in \mathscr{C} is a square $\Delta^1 \times \Delta^1 \to \mathscr{C}$ of the form

A triangle is called a *fiber sequence* if it is a cartesian square, and a *cofiber sequence* if it is a cocartesian square.

If the above triangle is a fiber sequence, then A is called the *fiber* of g and is also denoted fib(g).

If the above triangle is a cofiber sequence, then B is also called the *cofiber* of f and is denoted cofib(f).

Definition: An ∞ -category \mathscr{C} is called *stable* if it satisfies the following conditions: (1) \mathscr{C} is pointed.

(2) Every morphism in \mathscr{C} has a fiber and a cofiber.

(3) A triangle in \mathscr{C} is a fiber sequence if and only if it is a cofiber sequence.

Remark: Stability of an ∞ -category is a *property*, rather than additional structure.

See [HA, 1.1.1].

2. The Homotopy Category of a Stable ∞ -Category

The homotopy category of a stable ∞ -category admits the structure of a triangulated category in a canonical way [HA, 1.1.2] We recall the definition of a triangulated category.

Definition: An ordinary (1–)category \mathscr{A} is called *additive* if it is enriched over the category Ab of abelian groups and has finite biproducts.

Definition: A *triangulated category* consists of the following data:

- (1) An additive category \mathscr{A} .
- (2) A functor $T: \mathscr{A} \to \mathscr{A}$ called the translation functor.
- (3) A collection of distinguished triangles

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} TA$$

such that the following axioms are satisfied:

(TR1) (a) Every morphism $f: X \to Y$ in \mathscr{D} can be extended to a distinguished triangle in \mathscr{D} .

(b) The collection of distinguished triangles is stable under isomorphism.

(c) For every object X in \mathscr{D} , the triangle

$$X \xrightarrow{\operatorname{id}_X} X \longrightarrow 0 \longrightarrow TX$$

is distinguished.

(TR2) A triangle

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} TA$$

is distinguished if and only if

$$B \xrightarrow{g} C \xrightarrow{h} TA \xrightarrow{-Tf} TB$$

is distinguished.

(TR3) Given a commutative diagram in \mathscr{A}

$$\begin{array}{c} A \longrightarrow B \longrightarrow C \longrightarrow TA \\ \downarrow_{f} \qquad \downarrow \qquad \qquad \qquad \downarrow_{Tf} \\ A' \longrightarrow B' \longrightarrow C' \longrightarrow TA' \end{array}$$

there exists a morphism $C \to C'$ rendering the diagram commutative. (Note that this morphism is not required to be unique!)

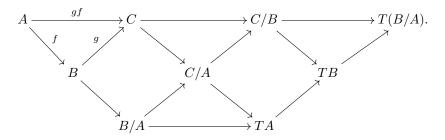
(TR4) Given three distinguished triangles

$$A \xrightarrow{f} B \longrightarrow B/A \longrightarrow TA$$
$$B \xrightarrow{g} C \longrightarrow C/B \longrightarrow TB$$
$$A \xrightarrow{gf} C \longrightarrow C/A \longrightarrow TA$$

there exists a fourth distinguished triangle

$$B/A \longrightarrow C/A \longrightarrow C/B \longrightarrow T(B/A)$$

making the following diagram commute:



 $\mathbf{2}$

Let \mathscr{C} be a stable ∞ -category with zero object 0. We define a triangulated structure on the homotopy category h \mathscr{C} as follows. Let \mathscr{M} be the full subcategory of Fun $(\Delta^1 \times \Delta^1, \mathscr{C})$ spanned by the cocartesian squares of the form

The functor that takes such a square and sends it to the object A yields a trivial fibration $\mathcal{M} \to \mathcal{C}$. Let s denote a section of this map. Furthermore, let $e : \mathcal{M} \to \mathcal{C}$ be the functor that sends a square as above to the object C. Then the composition

$$e \circ s : \mathscr{C} \to \mathscr{C}$$

is called the suspension functor and is denoted by Σ . Dually, we can define the loop functor $\Omega: \mathscr{C} \to \mathscr{C}$ by sending an object C of \mathscr{C} to the pullback of $(0 \to C \leftarrow 0)$.

The stability of \mathscr{C} implies that Σ and Ω are mutually inverse equivalences $\mathscr{C} \to \mathscr{C}$. We define the translation functor $T : h\mathscr{C} \to h\mathscr{C}$ to be the functor that Σ induces on the homotopy category.

By the universal property of the pushout that defines Σ , we have an equivalence of mapping spaces

$$\operatorname{map}_{\mathscr{C}}(\Sigma(X), Y)) \xrightarrow{\simeq} \Omega \operatorname{map}_{\mathscr{C}}(X, Y)$$

which is natural in $X, Y \in \mathscr{C}$. Using this equivalence, we obtain an enrichment of h \mathscr{C} in abelian groups. More specifically, given $X, Y \in \mathscr{C}$, let Z be an object such that $\Sigma^2 Z \simeq X$, then we have:

$$\operatorname{map}_{\mathscr{C}}(X,Y) \simeq \operatorname{map}_{\mathscr{C}}(\Sigma^{2}(Z),Y) \simeq \Omega^{2}\operatorname{map}_{\mathscr{C}}(Z,Y),$$

so $\operatorname{Hom}_{h\mathscr{C}}(X,Y) = \pi_0 \operatorname{map}_{\mathscr{C}}(X,Y) \cong \pi_2 \operatorname{map}_{\mathscr{C}}(Z,Y)$ admits a canonical and natural abelian group structure. This makes h \mathscr{C} enriched over Ab.

We next show that h \mathscr{C} has *finite biproducts*. It suffices to show that it has finite coproducts – since in any category enriched over commutative monoids, finite coproducts are automatically biproducts. In fact, we will show the slightly stronger statement that \mathscr{C} has finite coproducts. Let X and Y be objects in \mathscr{C} . Note that:

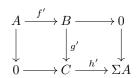
$$X \simeq \operatorname{cofib}(\Omega X \xrightarrow{u} 0) \text{ and } Y \simeq \operatorname{cofib}(0 \xrightarrow{v} Y).$$

The composite map $w : \Omega X \to 0 \to Y$ is a coproduct of u and v in Fun (Δ^1, \mathscr{C}) . The functor cofib preserves all colimits, so $\operatorname{cofib}(w)$ is a coproduct of X and Y in \mathscr{C} . Hence h \mathscr{C} has finite biproducts, and is thus additive.

Next we define the *distinguished triangles in* h \mathscr{C} . We say that a diagram

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} TA$$

is a distinguished triangle if there is a diagram $\Delta^1 \times \Delta^2 \to \mathscr{C}$ of the form



where f', g', h' represent f, g, h, respectively, and both squares are cocartesian.

Theorem. Let \mathscr{C} be a stable ∞ -category. Then h \mathscr{C} with the additional structure specified above is a triangulated category.

See [HA, 1.1.2] for the proof. We will only explain why the morphism that one gets in (TR3) fails to be unique. Consider distinguished triangles in h \mathscr{C}

$$A \xrightarrow{f} B \longrightarrow C \longrightarrow TA$$
$$A' \xrightarrow{f'} B' \longrightarrow C' \longrightarrow TA$$

and a commutative diagram in $\mathrm{h}\mathscr{C}$

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} B \\ \downarrow & & \downarrow \\ A' & \stackrel{f'}{\longrightarrow} B'. \end{array}$$

The commutativity of the last diagram means that there is an (invertible) 2morphism in \mathscr{C} which lifts the diagram to a commutative square in \mathscr{C} . For each such 2-morphism, we get a morphism $C \to C'$ in \mathscr{C} from the universal property of the cofiber $C = \operatorname{cofib}(f)$ – this induced morphism is essentially unique. However, the choice of a 2-morphism is not unique in general, and there can be different (=non-equivalent) such 2-morphisms that provide (non-homotopic) homotopies for the commutative square in h \mathscr{C} . These different 2-morphisms will generally produce different morphisms $C \to C'$.

Example: Let \mathscr{C} be a stable ∞ -category and let

$$\begin{array}{c} X \longrightarrow 0 \\ \downarrow & \downarrow \\ 0 \longrightarrow \Sigma X \end{array}$$

be the canonical pushout diagram. Then the induced morphism between the cofibers is $(\Sigma X \xrightarrow{id} \Sigma X)$. However, if we equip the associated square in h \mathscr{C} with a different homotopy (= 2-morphism), we will obtain a different morphism between the cofibers in general. For example, if we consider the trivial homotopy:

$$\Delta^1 \times \Delta^1 \xrightarrow{(i,j) \mapsto i+j} \Delta^2 \xrightarrow{(X \to 0 \to \Sigma X)} \mathscr{C},$$

then the induced morphism between the cofibers is the zero morphism.

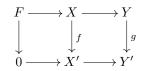
STABLE ∞ -CATEGORIES

3. Properties of stable ∞ -categories

Proposition. Let \mathscr{C} be a stable ∞ -category, and K a simplicial set. Then $\operatorname{Fun}(K, \mathscr{C})$ is again stable.

Proposition. Let \mathscr{C} be a pointed ∞ -category. Then \mathscr{C} is stable if and only if, \mathscr{C} has finite limits and colimits, and every square in \mathscr{C} is a pushout if and only if it is a pullback.

Proof. See [HA, Proposition 1.1.3.4]. The sufficiency of these conditions is obvious. For the converse, note that \mathscr{C} has finite (co)products – an argument was sketched above – and pushouts (pullbacks) – because these can be expressed as (co)equalizers, and therefore, as (co)fibers. Suppose that the right square of the diagram



is a pullback and let F be the fiber of f, i.e., the left square is a (co)fiber sequence. Then the composite square is again a fiber sequence. Since \mathscr{C} is stable, the composite diagram is also a cofiber sequence, which then implies that the right square is also a pushout. The converse is similar.

Proposition. Let $F : \mathcal{C} \to \mathcal{C}'$ be a functor between stable ∞ -categories. Then the following are equivalent:

(1) F preserves the zero object and fiber sequences.

(2) F is left exact, that is, F preserves all finite limits.

(3) F is right exact, that is, F preserves all finite colimits.

Proof. See [HA, Proposition 1.1.4.1]. The proof is based on the arguments of the last proposition. \Box

We say that F exact if it satisfies these equivalent properties. Note that an exact functor $F: \mathscr{C} \to \mathscr{C}'$ induces an exact functor $hF: h\mathscr{C} \to h\mathscr{C}'$ between triangulated categories.

References

[HA] Jacob Lurie, Higher algebra. Available online: https://www.math.ias.edu/~lurie/