
STABLE ∞-CATEGORIES

P. BONART

1. Stable ∞-categories

Definition: Let C be an ∞-category. An object c of C is called a zero object if
it is both initial and terminal. The ∞-category C is called pointed if it has a zero
object.

Definition: Let C be a pointed ∞-category with zero object 0. A triangle in C is
a square ∆1 ×∆1 → C of the form

A
f
//

��

B

g

��

0 // C.

A triangle is called a fiber sequence if it is a cartesian square, and a cofiber sequence
if it is a cocartesian square.
If the above triangle is a fiber sequence, then A is called the fiber of g and is also
denoted fib(g).
If the above triangle is a cofiber sequence, then B is also called the cofiber of f and
is denoted cofib(f).

Definition: An∞-category C is called stable if it satisfies the following conditions:
(1) C is pointed.
(2) Every morphism in C has a fiber and a cofiber.
(3) A triangle in C is a fiber sequence if and only if it is a cofiber sequence.

Remark: Stability of an ∞-category is a property, rather than additional struc-
ture.

See [HA, 1.1.1].

2. The Homotopy Category of a Stable ∞-Category

The homotopy category of a stable ∞-category admits the structure of a triangu-
lated category in a canonical way [HA, 1.1.2] We recall the definition of a triangu-
lated category.

Definition: An ordinary (1–)category A is called additive if it is enriched over the
category Ab of abelian groups and has finite biproducts.

Definition: A triangulated category consists of the following data:
(1) An additive category A .
(2) A functor T : A → A called the translation functor.
(3) A collection of distinguished triangles

A
f
// B

g
// C

h // TA
1
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such that the following axioms are satisfied:

(TR1) (a) Every morphism f : X → Y in D can be extended to a distinguished
triangle in D .
(b) The collection of distinguished triangles is stable under isomorphism.
(c) For every object X in D , the triangle

X
idX // X // 0 // TX

is distinguished.

(TR2) A triangle

A
f
// B

g
// C

h // TA

is distinguished if and only if

B
g
// C

h // TA
−Tf

// TB

is distinguished.

(TR3) Given a commutative diagram in A

A //

f

��

B //

��

C // TA

Tf

��

A′ // B′ // C ′ // TA′

there exists a morphism C → C ′ rendering the diagram commutative.
(Note that this morphism is not required to be unique!)

(TR4) Given three distinguished triangles

A
f
// B // B/A // TA

B
g
// C // C/B // TB

A
gf
// C // C/A // TA

there exists a fourth distinguished triangle

B/A // C/A // C/B // T (B/A)

making the following diagram commute:

A
gf

//

f

��

C //

""

C/B //

""

T (B/A).

B

g

>>

  

C/A

<<

""

TB

::

B/A

<<

// TA

<<
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Let C be a stable ∞-category with zero object 0. We define a triangulated
structure on the homotopy category hC as follows. Let M be the full subcategory
of Fun(∆1 ×∆1,C ) spanned by the cocartesian squares of the form

A //

��

0

��

0 // C.

The functor that takes such a square and sends it to the object A yields a trivial
fibration M → C . Let s denote a section of this map. Furthermore, let e : M → C
be the functor that sends a square as above to the object C. Then the composition

e ◦ s : C → C

is called the suspension functor and is denoted by Σ. Dually, we can define the loop
functor Ω : C → C by sending an object C of C to the pullback of (0→ C ← 0).

The stability of C implies that Σ and Ω are mutually inverse equivalences C → C .
We define the translation functor T : hC → hC to be the functor that Σ induces
on the homotopy category.

By the universal property of the pushout that defines Σ, we have an equivalence of
mapping spaces

mapC (Σ(X), Y ))
'−→ ΩmapC (X,Y )

which is natural in X,Y ∈ C . Using this equivalence, we obtain an enrichment of
hC in abelian groups. More specifically, given X,Y ∈ C , let Z be an object such
that Σ2Z ' X, then we have:

mapC (X,Y ) ' mapC (Σ2(Z), Y ) ' Ω2mapC (Z, Y ),

so HomhC (X,Y ) = π0mapC (X,Y ) ∼= π2mapC (Z, Y ) admits a canonical and natu-
ral abelian group structure. This makes hC enriched over Ab.

We next show that hC has finite biproducts. It suffices to show that it has fi-
nite coproducts – since in any category enriched over commutative monoids, finite
coproducts are automatically biproducts. In fact, we will show the slightly stronger
statement that C has finite coproducts. Let X and Y be objects in C . Note that:

X ' cofib(ΩX
u→ 0) and Y ' cofib(0

v→ Y ).

The composite map w : ΩX → 0 → Y is a coproduct of u and v in Fun(∆1,C ).
The functor cofib preserves all colimits, so cofib(w) is a coproduct of X and Y in
C . Hence hC has finite biproducts, and is thus additive.

Next we define the distinguished triangles in hC . We say that a diagram

A
f
// B

g
// C

h // TA
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is a distinguished triangle if there is a diagram ∆1 ×∆2 → C of the form

A
f ′
//

��

B

g′

��

// 0

��

0 // C
h′
// ΣA

where f ′, g′, h′ represent f, g, h, respectively, and both squares are cocartesian.

Theorem. Let C be a stable ∞-category. Then hC with the additional structure
specified above is a triangulated category.

See [HA, 1.1.2] for the proof. We will only explain why the morphism that one gets
in (TR3) fails to be unique. Consider distinguished triangles in hC

A
f
// B // C // TA

A′
f ′
// B′ // C ′ // TA′

and a commutative diagram in hC

A
f
//

��

B

��

A′
f ′
// B′.

The commutativity of the last diagram means that there is an (invertible) 2-
morphism in C which lifts the diagram to a commutative square in C . For each
such 2-morphism, we get a morphism C → C ′ in C from the universal property of
the cofiber C = cofib(f) – this induced morphism is essentially unique. However,
the choice of a 2-morphism is not unique in general, and there can be different
(=non-equivalent) such 2-morphisms that provide (non-homotopic) homotopies for
the commutative square in hC . These different 2-morphisms will generally produce
different morphisms C → C ′.

Example: Let C be a stable ∞-category and let

X //

��

0

��

0 // ΣX

be the canonical pushout diagram. Then the induced morphism between the

cofibers is (ΣX
id−→ ΣX). However, if we equip the associated square in hC with a

different homotopy (= 2-morphism), we will obtain a different morphism between
the cofibers in general. For example, if we consider the trivial homotopy:

∆1 ×∆1 (i,j) 7→i+j−−−−−−→ ∆2 (X→0→ΣX)−−−−−−−−→ C ,

then the induced morphism between the cofibers is the zero morphism.
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3. Properties of stable ∞-categories

Proposition. Let C be a stable∞-category, and K a simplicial set. Then Fun(K,C )
is again stable.

Proposition. Let C be a pointed ∞-category. Then C is stable if and only if, C
has finite limits and colimits, and every square in C is a pushout if and only if it
is a pullback.

Proof. See [HA, Proposition 1.1.3.4]. The sufficiency of these conditions is obvious.
For the converse, note that C has finite (co)products – an argument was sketched
above – and pushouts (pullbacks) – because these can be expressed as (co)equalizers,
and therefore, as (co)fibers. Suppose that the right square of the diagram

F //

��

X

f

��

// Y

g

��

0 // X ′ // Y ′

is a pullback and let F be the fiber of f , i.e., the left square is a (co)fiber sequence.
Then the composite square is again a fiber sequence. Since C is stable, the com-
posite diagram is also a cofiber sequence, which then implies that the right square
is also a pushout. The converse is similar. �

Proposition. Let F : C → C ′ be a functor between stable ∞-categories. Then the
following are equivalent:
(1) F preserves the zero object and fiber sequences.
(2) F is left exact, that is, F preserves all finite limits.
(3) F is right exact, that is, F preserves all finite colimits.

Proof. See [HA, Proposition 1.1.4.1]. The proof is based on the arguments of the
last proposition. �

We say that F exact if it satisfies these equivalent properties. Note that an exact
functor F : C → C ′ induces an exact functor hF : hC → hC ′ between triangulated
categories.

References

[HA] Jacob Lurie, Higher algebra. Available online: https://www.math.ias.edu/~lurie/

https://www.math.ias.edu/~lurie/

	1. Stable -categories
	2. The Homotopy Category of a Stable -Category
	3. Properties of stable -categories
	References

