STABLE co-CATEGORIES

P. BONART

1. STABLE 00-CATEGORIES

Definition: Let % be an oo-category. An object ¢ of & is called a zero object if
it is both initial and terminal. The co-category ¥ is called pointed if it has a zero
object.

Definition: Let € be a pointed co-category with zero object 0. A triangle in € is
a square A x Al = € of the form

A B

| |

0 C.

A triangle is called a fiber sequence if it is a cartesian square, and a cofiber sequence
if it is a cocartesian square.

If the above triangle is a fiber sequence, then A is called the fiber of g and is also
denoted fib(g).

If the above triangle is a cofiber sequence, then B is also called the cofiber of f and
is denoted cofib(f).

Definition: An co-category % is called stable if it satisfies the following conditions:
(1) € is pointed.

(2) Every morphism in % has a fiber and a cofiber.

(3) A triangle in € is a fiber sequence if and only if it is a cofiber sequence.

f
—

—

Remark: Stability of an oco-category is a property, rather than additional struc-
ture.

See [HAl 1.1.1].

2. THE HOMOTOPY CATEGORY OF A STABLE 0co-CATEGORY

The homotopy category of a stable co-category admits the structure of a triangu-
lated category in a canonical way [HAL 1.1.2] We recall the definition of a triangu-
lated category.

Definition: An ordinary (1-)category  is called additive if it is enriched over the
category Ab of abelian groups and has finite biproducts.

Definition: A triangulated category consists of the following data:
(1) An additive category <.

(2) A functor T : &7 — o called the translation functor.

(3) A collection of distinguished triangles

f g

A B c—"sTA
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such that the following axioms are satisfied:

(TR1) (a) Every morphism f : X — Y in & can be extended to a distinguished
triangle in 2.

(b) The collection of distinguished triangles is stable under isomorphism.

(¢c) For every object X in 2, the triangle

idx

X X 0 TX
is distinguished.
(TR2) A triangle
Al f 0 ty7a
is distinguished if and only if
B—2sc—tsra—rp
is distinguished.
(TR3) Given a commutative diagram in o
A B C TA
I [
A’ B’ C’ TA

there exists a morphism C' — C' rendering the diagram commutative.
(Note that this morphism is not required to be unique!)

(TR4) Given three distinguished triangles
/

A B B/A TA
B—sC C/B TB
A0 C/A TA
there exists a fourth distinguished triangle
B/A C/A C/B——T(B/A)

making the following diagram commute:

\/\ N~
NSNS
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Let € be a stable oco-category with zero object 0. We define a triangulated
structure on the homotopy category h% as follows. Let .#Z be the full subcategory
of Fun(A! x A', %) spanned by the cocartesian squares of the form

A——0

|

0o——C.

The functor that takes such a square and sends it to the object A yields a trivial
fibration .# — % . Let s denote a section of this map. Furthermore, let ¢ : 4 — €
be the functor that sends a square as above to the object C. Then the composition

e0s:%¢ —%€

is called the suspension functor and is denoted by 3. Dually, we can define the loop
functor Q : € — € by sending an object C' of € to the pullback of (0 — C + 0).

The stability of € implies that 3 and €2 are mutually inverse equivalences 4 — % .
We define the translation functor 7' : h4 — h% to be the functor that . induces
on the homotopy category.

By the universal property of the pushout that defines ¥, we have an equivalence of
mapping spaces

which is natural in X,Y € €. Using this equivalence, we obtain an enrichment of

h% in abelian groups. More specifically, given X,Y € €, let Z be an object such
that 27 ~ X, then we have:

mapy (X,Y) ~ map%)(22(Z),Y) ~ QQmap%(Z7 Y),

so Hompe (X,Y) = momap, (X, Y) = mamap,(Z,Y) admits a canonical and natu-
ral abelian group structure. This makes h'¢" enriched over Ab.

We next show that h% has finite biproducts. It suffices to show that it has fi-
nite coproducts — since in any category enriched over commutative monoids, finite
coproducts are automatically biproducts. In fact, we will show the slightly stronger
statement that ¢ has finite coproducts. Let X and Y be objects in 4. Note that:

X =~ cofib(QX % 0) and Y =~ cofib(0 > Y).

The composite map w : QX — 0 — Y is a coproduct of u and v in Fun(Al, ).
The functor cofib preserves all colimits, so cofib(w) is a coproduct of X and Y in
%. Hence h% has finite biproducts, and is thus additive.

Next we define the distinguished triangles in h%. We say that a diagram

f g

A B c—"sTA
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is a distinguished triangle if there is a diagram A' x A% — % of the form

AL, 40
1
0——C—"yx4

where f’,¢’, h' represent f, g, h, respectively, and both squares are cocartesian.

Theorem. Let € be a stable co-category. Then h€ with the additional structure
specified above is a triangulated category.

See [HAL 1.1.2] for the proof. We will only explain why the morphism that one gets
in (TR3) fails to be unique. Consider distinguished triangles in h®

A—1,nB c TA

A p c TA

and a commutative diagram in h%

A%B

|, |

aLp

The commutativity of the last diagram means that there is an (invertible) 2-
morphism in 4 which lifts the diagram to a commutative square in 4. For each
such 2-morphism, we get a morphism C' — C’ in & from the universal property of
the cofiber C' = cofib(f) — this induced morphism is essentially unique. However,
the choice of a 2-morphism is not unique in general, and there can be different
(=non-equivalent) such 2-morphisms that provide (non-homotopic) homotopies for
the commutative square in h%. These different 2-morphisms will generally produce
different morphisms C' — C".

Example: Let € be a stable co-category and let

X—0

|

0—— XX

be the canonical pushout diagram. Then the induced morphism between the

cofibers is (XX v x ). However, if we equip the associated square in h¢ with a
different homotopy (= 2-morphism), we will obtain a different morphism between
the cofibers in general. For example, if we consider the trivial homotopy:

Al x Al

(3,5)—>i+j A2 (X—=0—-XX) (67

then the induced morphism between the cofibers is the zero morphism.
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3. PROPERTIES OF STABLE 0co-CATEGORIES

Proposition. Let € be a stable co-category, and K a simplicial set. Then Fun(K, %)
is again stable.

Proposition. Let € be a pointed oco-category. Then € is stable if and only if, €
has finite limits and colimits, and every square in € is a pushout if and only if it
is a pullback.

Proof. See [HAl Proposition 1.1.3.4]. The sufficiency of these conditions is obvious.
For the converse, note that ¢ has finite (co)products — an argument was sketched
above — and pushouts (pullbacks) — because these can be expressed as (co)equalizers,
and therefore, as (co)fibers. Suppose that the right square of the diagram

F——X—Y

A

0— X' —Y'
is a pullback and let F' be the fiber of f, i.e., the left square is a (co)fiber sequence.
Then the composite square is again a fiber sequence. Since % is stable, the com-

posite diagram is also a cofiber sequence, which then implies that the right square
is also a pushout. The converse is similar. [

Proposition. Let F : 4 — %' be a functor between stable co-categories. Then the
following are equivalent:

(1) F preserves the zero object and fiber sequences.

(2) F is left exact, that is, F' preserves all finite limits.

(8) F is right exact, that is, F' preserves all finite colimits.

Proof. See [HAL Proposition 1.1.4.1]. The proof is based on the arguments of the
last proposition. O

We say that F' exact if it satisfies these equivalent properties. Note that an exact
functor F': € — %’ induces an exact functor h¥: h4 — h%”’ between triangulated
categories.
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